

MECHANICAL SCREENING/MANUAL SIEVING

MECHANICAL SCREENING/MANUAL SIEVING

IMPACT

PERFORMANCE

✓ In the event of poor usage, removal of large quantities of clean sediment; deconstruction and destabilisation of the foot of the dune (upper end of beach); erosion, destruction of the dune and the associated vegetation, decrease in biodiversity and fertility by reduction of the low water mark

 \checkmark Can tend to fragment the pollutant in certain conditions.

Efficiency: varies considerably according to the site, pollutant, degree of pollution (a few tens to a few hundreds of m^2/h for displacement on the beach, from 1 to 5 m^2/h in the case of dislodgement).

Minimum workforce required: 1 driver

Waste: varied solid waste, tar balls, patties of oil with a small quantity of sand; overall oil content: at least 20% (but very much less if the technique is misused).

Manual sieving using different devices

WHERE MECHANICAL SCREENING IS INAPPROPRIATE

MANUAL SIEVING OF SAND

Separate small pieces of tar from the beach sand by hand sieving.

EQUIPMENT

Basic equipment:

- ✓ Sand sieve, mason's sieve
- Nets with small mesh size
- ✓ Small baskets made of meshing or perforated sheet metal with a handle to drag them along the beach

CONDITIONS OF USE

Pollution: for use during final stage of cleanup, on tar balls and small soiled debris.

Site: sensitive areas (dunes) or areas that cannot be accessed by mechanical screeners.

Organise work and traffic to avoid spreading the oil

PERFORMANCE

Yield: hand sieving is slow and labour intensive.

