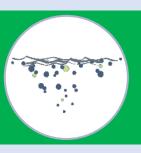


Response objectives


- 1. People (safety first)
- 2. Environment
- 3. Assets
- 4. Reputation

Environmental Impacts

Response techniques: the 'toolkit'

Dispersant

In-situ burning (controlled burn)

Containment

Shoreline protection and clean-up

Net Environmental Benefit Analysis (NEBA)

Structured approach to compare the ecological and socio-economic benefits of potential response techniques, and develop a response strategy to reduce the overall impact of an oil spill

Choosing response techniques to maximize mitigation of spill impacts

Incorporates stakeholder dialogue and can provide reassurance to communities

dustry rrent blicati

Describes the NEBA principles – updates the **IPIECA 2000 publication**

Guidelines on implementing spill impact mitigation assessment (SIMA)

A technical support document to accompany the IPIECA-IOGP guidance on net environmental benefit analysis (NEBA)

Oil spill preparedness

THE GLOBAL OIL AND GAS INDUSTRY ASSOCIATION FOR ENVIRONMENTAL AND SOCIAL ISSUES

www.ipieca.org

Describes the SIMA methodology

NEBA fundamentals

"...NEBA will require taking into account the circumstances of the spill, the <u>practicalities</u> of clean-up response, scientific understanding of the <u>relative impacts</u> of oil and clean-up options, and some kind of <u>value</u> <u>judgement</u> of the <u>relative importance</u> of social, economic and environmental factors.

<u>Common sense</u> and <u>consensus-forming</u> are just as important in this decision making as quantifiable scientific information..."

Building a NEBA methodology

...how complex should it be?

Spill Impact Mitigation Assessment (SIMA) is a practical methodology

- Used during contingency planning and incident response
- Applicable to larger or higher consequence scenarios

Spill Impact Mitigation Assessment (SIMA)

Transparent

Promotes dialogue

Holistic

Integrates ecological, socio-economic and cultural considerations

Qualitative assessment

Incorporates community values and expert judgement

Promotes all response techniques

Assessing their benefits and drawbacks

Flexible

Adaptable to local setting and concerns

SIMA Process

Select the best options for the given scenarios, based on which combination of tools and techniques will minimize impacts

Balance trade-offs by weighing a range of benefits and drawbacks resulting from each feasible response option

Evaluate data to identify spill scenarios and potential response options, and to understand the potential impacts

Predict outcomes for the given scenarios, to determine which response options are effective and feasible

SIMA Matrix

	NO INTERVENTION		CONTAINMENT AND RECOVERY		SURFACE DISPERSANT		SUBSEA DISPERSANT	CONTROLLED IN-SITU BURNING		SHORELINE BOOMING	
RESOURCE	Potential relative impact		Impact modification factor	Relative impact mitigation score	Impact modification factor	Relative impact mitigation score		Impact modification factor	Relative impact mitigation score	Impact modification factor	Relative impact mitigation score
COMPARTMENTS	1	Α	B1	A x B1	B2	A x B2		B4	AxB4	B5	A x B5
Seabed	None	1	0	0	0	0	Not feasible	0	0	0	0
Lower water column	None	1	0	0	0	0	for a	0	0	0	0
Upper water column	Low	2	1	2	-2	-4	surface spill	0	0	0	0
Water surface	Medium	3	1	3	3	9		2	6	0	0
Air	Medum	3	1	3	2	6		1	3	0	0
Shorelines		3	1	3	3	9		2	6	1	3
Saltmarsh	High	4	1	 	3	 		2	 	1	
Estuarine mudflats	High	4	1	!	3	!		2	i !	1	i !
Sandy beaches	Low	2	1		3			2		2	
High value resources	Low	2	0	0	1	2		0	0	1	2
Socio-economic		4	1	4	2	8		1	4	3	12
Boat harbour	Medium	3	1	i !	2	: !		1	i !	2	! !
Water recreation Cultural	High	1	0	0	2	2		1	1	<u>3</u> 1	1
Cultural None 1 0				0				'	1	1	-
Total impact mitigation score:				15		32			20		18
Ranking:				4th		1st			2nd		3rd

Challenges

The 'maths' is flawed

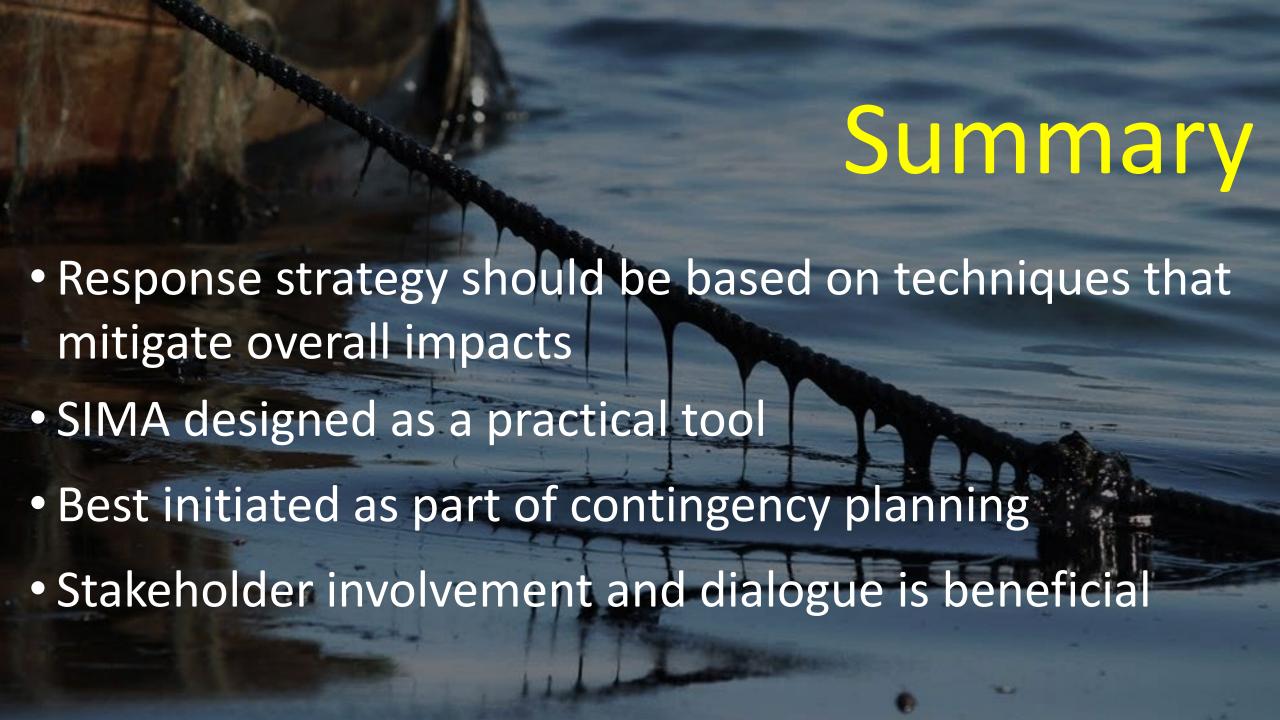
It doesn't quantify impact

Ecological concerns should

override socio-economic

What about laboratory

studies?


Criticism	Counter viewpoint
It's too simplistic	Choosing and prioritising response options is not
	complicated

It's not a formula – just a guide

It doesn't need to – it is assessing *relative* impact mitigation potential

They do not represent the real world and can lead to blinkered perspectives

The default matrix is weighted towards ecology but this can be adapted to fit local values

