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ABSTRACT 299685: 

 

 A High Resolution Operational Oceanography System that provides decision makers 

with short-term (within 48 hours) oil spill trajectory forecasting at local scale, has been 

developed in the Bay of Santander (Spain).  

 

The system is based on process models applied in a set of nested grids. 

Hydrodynamics in the study area are calculated with the COAWST modelling system which 

uses daily boundary conditions and meteorological forcing obtained from the European 

network MYOCEAN (http://www.myocean.eu/) and from the Spanish met office, AEMET, 

respectively.  Daily COAWST’s outputs and meteorological forecast are ready to be used by 

the oil spill transport and fate model, TESEO. A web service that manages the operational 

system and allows the user to run hypothetical as well as real oil spill trajectories has been 

implemented.  

 

Data from two hydrodynamics field campaigns and from experimental tests carried 

out with two types of oils have been used to validate the hydrodynamic and the oil spill 

models. 

 

INTRODUCTION: 

 

Up to now, operational oceanography systems (OOS) which provide decision makers 

with oil spill trajectory forecasting, have demonstrated their usefulness in dealing with recent 

crisis involving dramatic environmental and socio economic impacts (Castanedo et al., 2006). 

Accordingly, numerous national and regional OOS have been set up all over the world in 

order to facilitate and support an adequate response and preparedness (e.g. Olabarrieta et al., 

2007). However, occasionally, the available spatial data resolution of these systems is 

insufficient to be used for coastal applications, and therefore, this information must be 

transferred to shallow water, in order to increase the spatial resolution (namely downscaling).  

 

mailto:castanedos@unican.es
http://www.myocean.eu/
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With the aim of increasing our capacity to respond to oil spill pollution at the coast, a 

set of high resolution operational oceanography systems (HR-OOS) are being currently 

developed in the framework of the SPRES (OIL SPILL PREVENTION AND RESPONSE 

AT LOCAL SCALES) project, co-funded by the European Transnational Programme 

(Atlantic Area). This pilot study is being undertaken in four European sites: Santander’s Bay, 

Aveiro’s Lagoon, Belfast’s Lough and the Port of Falmouth.  

 

Certainly, one of the main challenges when approaching the HR-OOS, is to correctly 

model local scale physical processes whilst providing a response fast enough to be used in an 

emergency situation.  

 

Bearing this in mind, the present paper describes the OOS that is being built in the 

Bay of Santander. Special attention has been paid to show the numerical models setup and 

their calibration.     

 

METHODS: 

 

Study area 

Santander’s Bay is one of the largest inlets (2270 ha) on the northern coast of Spain 

(Gulf of Biscay) (see Figure 1). The bay provides a natural shelter from the waves of the Gulf 

of Biscay which arrive from NNW and have an annual average significant wave height of 1 

m with winter storms waves of 4 m. Tide is semidiurnal with a mean and spring tidal range of 

3 and 5 meters respectively.  Four rivers discharge into the Bay. Their average discharge does 

not reach 15 m
3
/s, although under flood conditions the discharge may be as large as 400 m

3
/s. 

 

Figure 1. Location of the Bay of Santander. 

Seventy five per cent of the total extension of the estuary is intertidal area. Subtidal 

zones are dominated by shallow waters, with maximum depths of 10–12 m occurring along 

the navigation channel. 
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Regarding oil spill risk, the Prestige disaster (Castanedo et al., 2006; 2009) proved 

that it is possible for an oil spill occurring thousands of kilometres away to enter and impact 

the Bay. Moreover, the harbour of Santander and other companies located within the Bay 

manage oil products and are a real threat for this valuable environment which supports many 

socio economical activities such as shellfish extraction, fishing and recreational uses.  

 

Description of the HR-OOS  

The main goal of the system presented here is to provide short-term (within 48 hours) 

oil spill trajectory forecasting at local scale (Santander’s Bay, Spain).  

 

The system is based on nesting high resolution models and is made up by the 

following components: (1) Daily boundary conditions (sea level, ocean currents, salinity and 

temperature) and meteorological forcing are obtained from the European network 

MYOCEAN (http://www.myocean.eu/) and from the Spanish met office, AEMET, 

respectively; (2) COAWST modelling system which allows to exchange data fields between 

the ocean model ROMS, the atmosphere model WRF and the wave model SWAN, is the 

engine of the OOS (at this stage of the project only ROMS is implemented); (3) an oil spill 

transport and fate model, TESEO (Abascal et al., 2007); (4) a web service that manages the 

operational system and allows the user to run hypothetical as well as real oil spill trajectories 

using the daily forecast of wind and high resolution (O(20 m)) ocean variables carried out by 

COAWST. Figure 2 shows a scheme of the structure of the system.  

 

As can be observed, the HR-OOS is composed of two main modules: the HR 

operational oceanographic module (HR-OOM) and the HR oil spill forecast module (HR-

OSM).  

 

The HR-OOM is based on COAWST modelling system (A Coupled-Ocean-

Atmosphere-Wave-Sediment Transport Modelling System) (Warner et al., 2010). COAWST 

is comprised of the Model Coupling Toolkit to exchange data fields between the ocean model 

ROMS, the atmosphere model WRF, the wave model SWAN, and the sediment capabilities 

of the Community Sediment Transport Model. In this first development phase only the ocean 

model ROMS (Regional Ocean Modelling System) is running operationally. 

 

ROMS (Shchepetkin and McWilliams, 2005) is a three-dimensional, free-surface, 

terrain-flowing numerical model that solve the Reynolds-averaged Navier-Stokes equations 

using the hydrostatic and Boussinesq assumptions. It has been specially designed for accurate 

simulations of regional oceanic systems for a diverse range of applications (Warner et al., 

2005; Wilkin et al., 2005). The algorithms that comprise ROMS computational nonlinear 

kernel are described in detail in Shchepetkin and McWilliams (2003, 2005), and the tangent 

linear and adjoint kernels and platforms are described in Moore et al. (2004). ROMS includes 

accurate and efficient physical and numerical algorithms and several coupled models for 

biogeochemical, bio-optical, sediment, and sea ice applications. It also includes several 

vertical mixing schemes (Warner et al., 2005), multiple levels of nesting and composed grids 

and wetting and drying capabilities. 

 

The HR-OSM is based on the oil spill model TESEO developed by the Environmental 

Hydraulics Institute of the University of Cantabria (IH Cantabria) (Abascal et al., 2007). 

TESEO is composed of a transport module and a weathering module that simulate the 

processes governing the evolution and behaviour of oil spilled on the marine water. Oil spill 

transport is described by tracking numerical particles equivalent to the oil slicks by means of 

http://www.myocean.eu/
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the two-dimensional Lagrangian approximation. At each time step, the new position of the 

particles is computed by the superposition of the transports induced by the mean flow, tides, 

wind/waves and turbulent dispersion. The processes encoded in TESEO to describe physical 

and chemical weathering processes of spilled oil include: spreading, evaporation, 

emulsification and the change of rheological properties. The model also takes into account oil 

beaching.  

 

 

Figure 2. Flow chart of the HR-OOS in Santander Bay. 
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HR-OOS SETUP: 

 

Model domain 

To get the desirable resolution (46 m) two embedded grids with two-way nesting are 

used. The HR bathymetry used to build these grids is the result of the assemblage of well-

known regional bathymetric databases: Etopo 1’ and Admiralty charts, local bathymetric 

databases provided by the Santander Port Authority and the Topography Department of the 

University of Cantabria and two bathymetric surveys carried out in the framework of SPRES 

project. Figure 3 shows the set of grids used and Table 1 summarizes their main 

characteristics.  

 

Figure 3. Set of grids used in Santander Bay HR-OOS: a) Intermediate grid; b) local 

grid. 

GRID NAME Horizontal cells Vertical levels Cell size (m) 

Intermediate grid 260x105 5 230 

Local grid 250x275 5 46 

 

Table 1. Properties of the grids used in Santander Bay 

In relation to the vertical distribution, 5 vertical levels in σ coordinates have been 

defined. ROMS has a generalized vertical, terrain-following, σ coordinate system. In this 

application the transformation equation chosen was the first one described in Shchepetkin and 

McWilliams (2005) and the stretching function is the one developed by Song and Haidvogel 

(1994).  

 

Once the model domain was defined, the downscaling procedure consisted of 

designing a pre-processing scheme to prepare the boundary and initial conditions (from 
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MyOcean-IBI, http://www.myocean.eu.) and the atmospheric forcing (from AEMET, 

Spanish MetOffice, http://www.aemet.es.) to feed the COAWST model (see Figure 2) . 

 

Initial and Boundary Conditions 

Initial and boundary conditions for the HR-OOM are provided by MyOcean-IBI 

(Iberian-Biscay-Irish) Physical Forecasting System. This system is based on a NEMO model 

application run at 1/36º horizontal resolution. The System is daily run by Puertos del Estado 

and Mercator-Ocean and provides 5-day hydrodynamic forecast (+ 1 day hindcast as best 

estimate) including high frequency processes to characterize regional scale marine processes 

(i.e. tidal forcing, surges, high frequency atmospheric forcing, fresh water river discharge, 

etc.). It provides 3D daily means field of water temperature, salinity, sea surface height, zonal 

velocity and meridional velocity, as well as hourly means of surface fields (sea height, water 

temperature and currents). Figure 4 shows the IBI domain. 

 

The initial conditions consist of a three dimensional structure of salinity and water 

temperature, depth averaged currents, and free surface elevation for both grids. These initial 

data can come from: (1) the HR-OOS previous (day-before) simulation; (2) in case of any 

failure, from IBI-MyOcean interpolated data to the two nested grid. 

 

 

Figure 4. MyOcean-IBI domain. Source: http://www.myocean.eu.org. 

To obtain the boundary conditions, the HR-OOS interpolates the following IBI-

MyOcean variables to the intermediate grid nodes: 

• Vertical profiles of water temperature and salinity (daily resolution) 

• Depth averaged currents (hourly resolution) 

• Baroclinic currents (daily resolution) 
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• Free surface elevation (hourly resolution) 

 

COAWST model has different options to include these boundary conditions. After 

several calibration tests, the following options were activated: 

• Temperature and salinity: Flather condition 

• Depth averaged currents: Chapman condition 

• Baroclinic currents: Radiation condition 

• Free surface elevation: Radiation and nudging condition 

 

Atmospheric forcings 

The atmospheric forcings are provided by AEMET, the Spanish MetOffice 

(http://www.aemet.es). AEMET, through the forecasting system HIRLAM (High Resolution 

Limited Area Model) which runs at 1/7º in Atlantic area, provides every 6 hours, 72-hours 

atmospheric forecast (hourly data). The atmospheric variables used by HR-OOS are 

northward and eastward wind at 10 m over the sea surface, sea level pressure, SLP, and heat 

and freshwater fluxes, all of them with hourly resolution. Some pre-processing is needed to 

obtain the final atmospheric input file (e.g. extraction of the land values and extrapolation of 

the sea values to land).  

 

ROMS model has different options to include heat and freshwater fluxes. The one 

selected in the HR-OOS consists of activating the bulk fluxes module (Fairall et at., 1996a, 

1996b), which, although is more time-consuming, gives the best results.  

 

Web service 

The HR-OOS is run daily by IH-Cantabria and provides 2-day hydrodynamic forecast 

(sea level, currents, temperature and salinity) and 1-day of hindcast as best estimate. 

Furthermore, a web service has been developed that manages the operational system and 

allows the user to run hypothetical as well as real oil spill trajectories using the daily forecast 

of wind and the high resolution ocean variables as input for the TESEO model. Figures 5 and 

6 show and example of the HR-OOS interface.  

 

 

Figure 5. Map of velocity currents forecast into the Santander Bay. 
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Figure 6. Hypothetical oil spill simulation into the Santander Bay. 

SYSTEM VALIDATION: 

 

To improve the quality of the simulations two field campaigns (winter/summer) to 

calibrate/validate the hydrodynamic model COAWST have been performed. Moreover, in 

order to improve the weathering formulations included in the oil spill model, TESEO, 

laboratory test are being conducted by the Centre of Documentation, Research and 

Experimentation on Accidental Water Pollution (Cedre).   

 

COAWST validation 

The HR-OOM has been calibrated and validated using data from a permanent tidal 

gauge located inside the Bay (managed by Puertos del Estado) and two field campaigns 

carried out in summer of 2012 and winter of 2013 (see Figure 7). The summer campaign 

lasted 19 days, from 18th July to 6th August, and the winter campaign lasted 16 days, from 

7th March to 22nd March.  
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Figure 7. Locations of the sensors used in the hydrodynamic campaigns in Santander 

Bay. Pressure sensors (red circles), current profilers (red triangles) and micro-pressure 

sensors (red stars). a) summer (July 2012); b) winter ( March 2013). 

  

The hydrodynamic model calibration consists of quantifying the optimal 

hydrodynamic model parameters, comparing modelled results with real observed values by 

using statistical descriptors. In this case, the unknowns were the hydrodynamic model 

parameters (bottom drag coefficient DC
and the horizontal eddy viscosity, k) and the 

turbulence closure model (TCM). We have used several statistical descriptors such as the root 

mean square error (RMSE), the correlation index (  ) and the skill index ( skill ), which was 

finally selected to evaluate the model performance: 
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 are the instrumental data, modelx

 are the model results and n  are the length 

of both datasets. A perfect agreement between model results and observations involves skill  

parameter values equal to one ( 1skill  ), whereas a complete disagreement is associated with 

zero ( 0skill  ). Therefore, the objective is to find the best combination of (CD, k, TCM) that 
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where nc is the number of campaigns (studied periods), cnm
is the number of 

measured magnitudes, and ,c mns
 is the number of sensor of each campaign that measured the 

studied magnitudes. 

 

Since the hydrodynamic models are very time consuming, this ideal calibration 

methodology only can be applied in a discrete approximation: the decision variables, DC
 and 

k  are only allowed taking several values, 3 values each; and the decision variable TCM has 

only 2 options (constant, or k   model). According to the global descriptors obtained by 

solving Eq. (2), the best result were achieved with the following parameters: 
0.00392DC 

, 

0.05k   and k   as TCM. 

 

It is noteworthy that, after doing a detailed study of the statistical descriptor values per 

each instrument (i.e. per each location), the results are very dependent on the location of the 

sensor. For example, in some inner parts of the Santander Bay (the narrowest areas) the 

horizontal resolution is insufficient and because of that their statistical descriptors are the 

lowest. These less accurate descriptors mask some excellent ones in other locations which are 

more interesting for the target of the project.  

 

Figure 8 shows an example of the validation using the best parameter estimates for 

water level and horizontal currents. Water level results obtained with the calibrated HR-OOM 

are well suited to the real conditions. With regard to the current velocity results, the model 

gives satisfactory results obtaining RMSE  less than 0.12 m/s in all the cases.  

 

Although the HR-OOS results reproduce adequately the Bay hydrodynamics, future 

improvements, in the case of having more computational resources, could be to increase the 

vertical and horizontal resolution in order to achieve better results mainly in the narrowest 

channels of the Bay. It could be possible by nesting 3 computational grids instead of 2 grids, 

or by using curvilinear grids with more than 10 vertical layers. 

 

 

Figure 8. Comparison between field data and model results. Summer campaign; 

Equipment: ADCP-NAwac (C2). a) Free surface elevation; b) depth average current velocity.  

 

a) b)
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TESEO validation 

As was mentioned, the HR-OSM is made up by the oil spill model TESEO (Abascal 

et al., 2007). The transport module of TESEO was calibrated and validated in previous works 

using data from drifting buoys (Abascal et al., 2007, 2009a, 2009b). Specifically, buoys 

deployed in the Bay of Biscay during the Prestige accident were used to calibrate the model 

and to obtain the optimal coefficients for the study area (Abascal et al., 2009a).  

 

The weathering module included in TESEO simulates spreading, evaporation and 

emulsification using well know formulations (e.g. Fay (1969, 1971); Lehr et al. (1984); Stiver 

and MacKay (1984); MacKay (1980)). In order to adjust the weathering formulations 

parameters, pilot scale experiments were conducted by Cedre in the framework of the SPRES 

project. Two different refined products were chosen in this study. A light product, a diesel 

oil, and a heavier oil, an IFO 220 (Intermediate Fuel Oil characterized by a viscosity of 220 

cSt at 50°C). Tests were performed considering various environmental conditions: 3 

temperatures (10, 15 and 20°C), 3 salinities (5, 20 and 35 g/L), and 3 different states of 

energy (low, average and high, the highest level corresponding to about sea state 3). The tests 

lasted 3 days (diesel oil) or 7 days (heavy fuel oil) in Cedre’s hydraulic canal (the 

Polludrome), which was used with the water being continuously circulated to simulate open 

sea conditions (see Figure 9). During the tests, surface oil samples were taken periodically to 

determine the oil characteristics (viscosity, density, water content and evaporation rate) and 

the concentration of PAHs dissolved in the water column (only in the case of the IFO 220). 

Conditions of weathering experiments were in agreement with those described previously 

(Guyomarch et al., 2012).  

 

 

Figure 9. The Polludrome. 

 

The model parameters to be calibrated are the empirical coefficients for each 

weathering process considered in the model: evaporation, emulsification and the change in 

density and viscosity. The parameters used to calibrate the weathering processes are: d 

(evaporation); Kw (emulsification); CDE (change in density); CT, CE, CV and CM (change 

in viscosity). The statistical descriptors used to compare model results with experimental 
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values are the root mean square error (RMSE), the correlation index (r) and the residual 

scatter index (RSI).  

 

The shuffled complex evolution method (Duan et al., 1992) developed by the 

University of Arizona (SCE-UA) has been applied to estimate the optimal coefficients of the 

oil spill model. The SCE-UA method is based on a synthesis of four concepts: (1) a 

combination of deterministic and probabilistic approaches; (2) a systematic evolution of a 

‘‘complex’’ of points spanning the parameter space in the direction of global improvement, 

(3) competitive evolution; (4) complex shuffling. The synthesis of these elements makes the 

SCE-UA method effective and robust, and also flexible and efficient.  

 

Following this methodology, the oil spill model calibration was formulated as an 

optimization problem where an objective function J has to be minimized: 

 

 ( )      ( )  
∑ ∑       ( )

  
   

  
   

  
 (3) 

where FT is the number of experimental tests, WP is the number of weathering 

processes considered, and θ=(d, Kw, CDE, CT, CE, CV, CM) is the vector of unknown 

parameters. 

 

Eq. (3) represents the mean of the values of the dimensionless standardized statistical 

index (residual scatter index (RSI)) obtained by comparing the predicted weathering 

processes of the model (evaporation, emulsification and changes of physicochemical 

properties), with the experimental results. 

 

According to the global descriptors obtained by applying Eq. (3), the coefficients 

minimizing the objective function were:  d= 2.034E-3, Kw= 1.085E-06, CDE= 0.18006, CT= 

1.00003, CE= 0.6504, CV= 0.23812, CM=15.44. The value of the global scatter index 

obtained was 0.62402.  

 

After a preliminary analysis of the calibration and validation results, we obtained the 

best results for the IFO 220. And specifically, for the evaporation with RMSE= 0 and RSI=0. 

We found that the poor results obtained with the Diesel oil are due to the overestimation of 

the initial area of the simulated oil slick. Ongoing analysis of these results is being conducted. 

As an example of the results, Figure 10 shows the comparison between experimental data and 

model results for one of the test carried out with the heavier oil, IFO 220. We can observe 

that although the model reproduces quite well the time evolution of the evaporation, 

emulsification and viscosity, density curves does not show a good agreement. These poor 

results for the density are consistent for all the IFO 220 tests. More research is required to 

explain this behavior. Overestimation of the initial area of the simulated oil slick and 

procedures for measuring density at laboratory are factors that will be investigated in future 

studies. 
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Figure 10.  Comparison between the numerical model (blue line) and the experimental 

data (red line). IFO 220.  (a) evaporation; (b) emulsification; (c) viscosity; (d) density. 
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