

Environmental Effects Of Arctic Oil Spills: Oil Biodegradation & Persistence

Fanny Chever¹, Nolwenn Le Cuff¹, Justine Receveur¹, Stéphane Le Floch¹, Catherine Boccadoro², Christoph Aeppli³ and Lionel Camus⁴ ¹ Centre de documentation, de recherche et d'expérimentations sur les pollutions accidentelles des eaux (CEDRE), France, ² International Research Institute of Stavanger (IRIS), Norway, ³ BIGELOW, USA, ⁴ Akvaplan Niva, Norway

Objective: Field Arctic petroleum exposures designed to assess, in natural conditions, the persistence and biodegradation of oil following different treatment scenarios, according to regular response options used at sea, such as natural attenuation, in situ burning and dispersion.

Study area / Mesocosms **Treatments Response options monitored** exposures conducted in large semi-contained Oil mesocosms specifically designed for Arctic conditions, Natural attenuation : 20 L oil / mesocosm (m) √ Dispersion : 20 L oil + 1 L dispersant / m placed in the Svalbard archipelago. In Situ Burning : 2 L residue / m a) Map of the Svalbard archipelago, b) the Svea fjord and the mesocosms location (red cross), c) Mesocosm applied during the campaign and d) Mesocosms deployment. Natural attenuation Dispersion Burned residue Products

Oil ✓ Kobbe (GOLIAT oil field, Barents sea)

Chemical composition		Physical properties	
10.7 % 0.3 %	 Saturates Asphaltenes Resins Aromatics 	Density (at 2°C, g/mL)	0.816
		Viscosity (at 2°C , 10s ⁻¹ , mPa.s)	6
		Surface tension (mN/m)	27.73
		Interfacial tension (mN/m)	13.44
		Pour point (°C)	- 39

Burned residue

- ✓ INERIS facilities (France)
- ✓ 2 L residue obtained from 20 L of KOBBE oil

Dispersant

- ✓ Concentrated dispersant (3rd generation)
- ✓ FINASOL OSR 52 (TOTAL Fluids)

Sampling and Analyses

- ✓ 5 time steps (4 during icing period, 1 after ice break up)
- ✓ From February to July 2015
- ✓ Sampling of sea ice and seawater
- ✓ storage at -20 °C

Most Concentrated Layer (oil)

- ✓ GC/FID : Fingerprint of the oil
- ✓ GC/MS: Quantification of individual compounds (PAHs, alcanes)

Seawater (3 dephts: 0 m, 1 m and 2 m) <

✓ SBSE/TD/GC/MS: Quantification of dissolved compounds (PAHs)

- Core sections (Top, Middle, Bottom)
- ✓ Melted ice: SBSE/TD/GC/MS ✓ If supernatant oil: GC/FID + GC/MS

Preliminary results 1 - Seawater : SBSE/TD/GC/MS analyses

2 - Most concentrated layer : GC/FID analyses

No contamination in the Control and no cross contamination between mesocosms

✓ Loss of light compounds

- ✓ High variability
- ✓ Migration of the dissolved compounds in the ice

Provides robust information for NEBA (Net Environmetal Benefit Analysis) related to Arctic spills

