
Sur le littoral : prélèvements et plan de sondage, analyses des hydrocarbures vieillis GCHT – GC-MS-MS

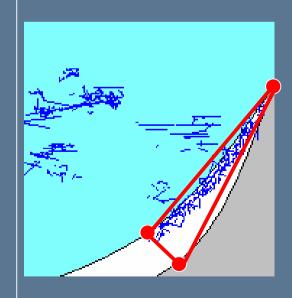
Objectif : fournir des résultats les plus représentatifs du degré de pollution d'un milieu

• Contrainte : représentativité est inversement proportionnel à la faisabilité (moyen matériel, moyen humain, durée)

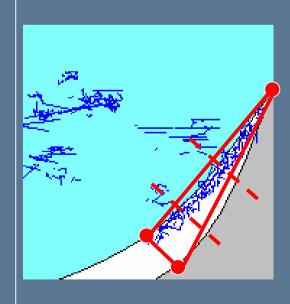
Objectif : fournir des résultats les plus représentatifs du degré de pollution d'un milieu

 Contrainte : représentativité est inversement proportionnel à la faisabilité (moyen matériel, moyen humain, durée)

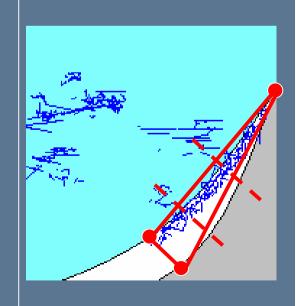
• Phase 0: définir les dimensions à suivre (horizontal, vertical, temporelle)



	JA	NV:	ER	20	80			FEVRIER 2008								MARS 2008							
L	м	м	3	٧	s	D		L	М	м	3	٧	s	D	Г	L	н	м	3	٧	S	D	
	1	2	3	4	5	6						1	2	3	Г						1	2	
7	8	9	10	11	12	13		4	5	6	7	8	9	10	3	;	4	5	6	7	8	9	
14	15	16	17	18	19	20	1	11	12	13	14	15	16	17	1	0	11	12	13	14	15	16	
21	22	23	24	25	26	27		_	_	_	_	_	23	24	1	7	18	19	20	21	22	23	
28	29	30	31				1	25	26	27	28	29		Ш	2	14	25	26	27	28	29	30	
																1	ш	Ш	Ш	Ш	Ш	Ш	
	AVRIL 2008 MAI 2008															JUIN 2008							
L	м	м	3	٧	s	D		L	м	м	3	٧	s	D	C	L	м	м	3	٧	s	D	
	1	2	3	4	5	6					1	2	3	4	ſ							1	
7	8	9	10	11	12	13	1	5	6	7	8	9	10	11	3	!	3	4	5	6	7	8	
14	15	16	17	18	19	20	1	12	13	14	15	16	17	18	5	,	10	11	12	13	14	15	
			24	25	26	27							24								21		
28	29	30					1	26	27	28	29	30	31	Ш	- 65	_	24	25	26	27	28	29	
																10							
	JUILLET 2008 AOUT 200															SEPTEMBRE 2008							
L	м	м	3	٧	5	D		L	м	м	3	٧	s	D		L	м	м	3	٧	5	D	
	1	2	3	4	5	6						1	2	3	1	l	2	3	4	5	6	7	
7	8	9	10	11	12	13	4	4	5	6	7	8	9	10	8	3	9	10	11	12	13	14	
14	15	16	17	18	19	20	2	11	12	13	14	15	16	17	1	5	16	17	18	19	20	21	
21	22	23	24	25	26	27	1	18	19	20	21	22	23	24	3	2	23	24	25	26	27	28	
28	29	30	31	ш			1	25	26	27	28	29	30	31	8	!9	30						
	oc	то	BRE	20	08				NO	/EM	IBR	E 2	008	3		DECEMBRE 2008							
L	м	м	3	٧	s	D		L	м	м	3	٧	s	D		L	м	м	3	٧	s	D	
		1	2	3	4	5							1	2	1	L	2	3	4	5	6	7	
6	7	8	9	10	11	12	1	3	4	5	6	7	8	9	8	3	9	10	11	12	13	14	
13	14	15	16	17	18	19	1	10	11	12	13	14	15	16	1	5	16	17	18	19	20	21	
20	21	22	23	24	25	26	1	17	18	19	20	21	22	23	2	2	23	24	25	26	27	28	
27	28	29	30	31			2	24	25	26	27	28	29	30	2	9	30						



- Objectif : fournir des résultats les plus représentatifs du degré de pollution d'un milieu
- Contrainte : représentativité est inversement proportionnel à la faisabilité (moyen matériel, moyen humain, durée)
- Phase 0: définir les dimensions à suivre (horizontal, vertical, temporelle)
- Phase 1: positionner le site de suivi (coordonnées GPS).



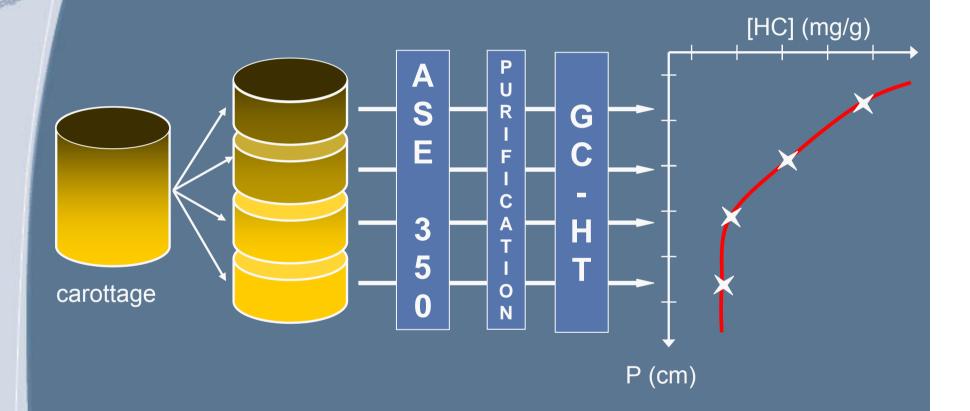
- Objectif : fournir des résultats les plus représentatifs du degré de pollution d'un milieu
- Contrainte : représentativité est inversement proportionnel à la faisabilité (moyen matériel, moyen humain, durée)
- Phase 0: définir les dimensions à suivre (horizontal, vertical, temporelle)
- Phase 1: positionner le site de suivi (coordonnées GPS).
- Phase 2: pré évaluation de l'étendue de la pollution (homogène, diffus).
 - ⇒ Si trop diffus, possibilité de zonage

- Objectif : fournir des résultats les plus représentatifs du degré de pollution d'un milieu
- Contrainte : représentativité est inversement proportionnel à la faisabilité (moyen matériel, moyen humain, durée)
- Phase 0: définir les dimensions à suivre (horizontal, vertical, temporelle)
- Phase 1: positionner le site de suivi (coordonnées GPS).
- Phase 2: pré évaluation de l'étendue de la pollution (homogène, diffus).
- Phase 3: prélèvements aléatoires dans chaque zone définie (duplicat ou pas)

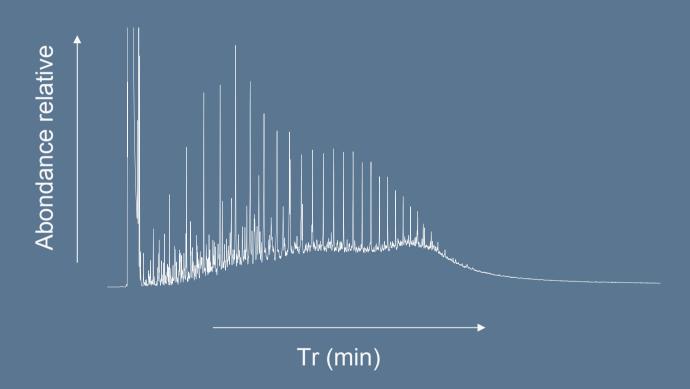
Prélèvement sur le littoral

Si caractérisation (vieillissement, teneur en eau, identification), prélèvement de produit pur.

Si dosage, prélèvement de matrice polluée (carottages, récipients)



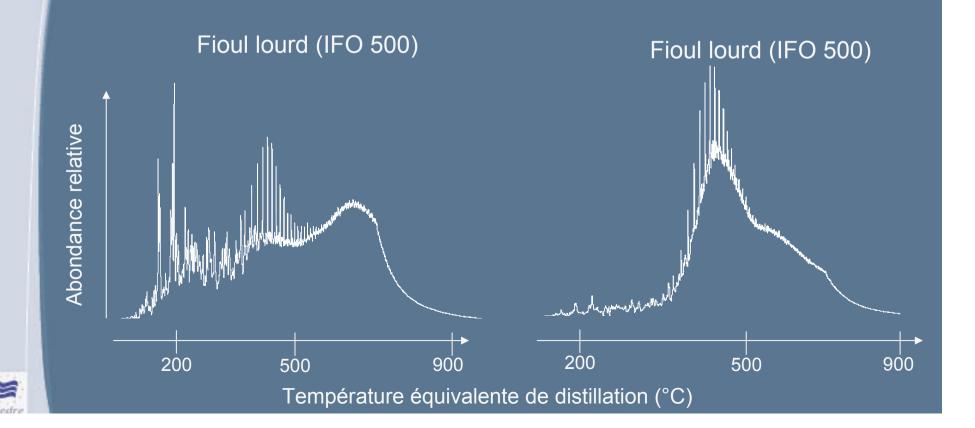
Traitement des échantillons



GC-HT

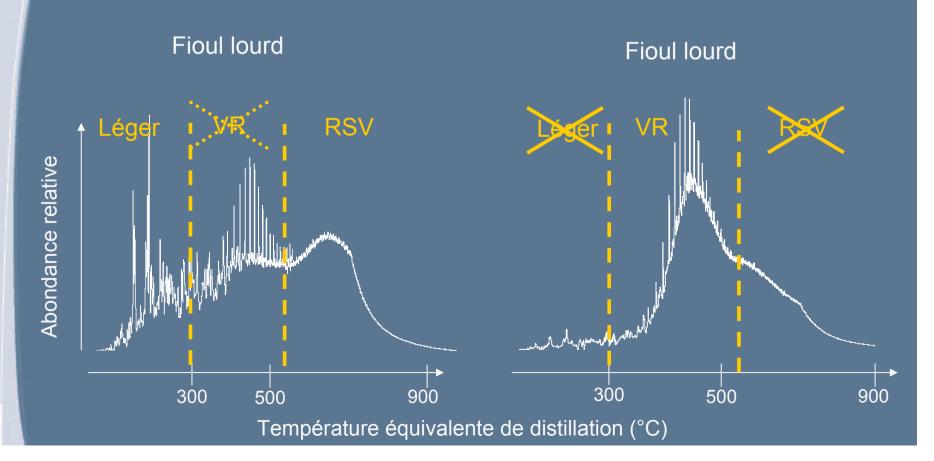
Chromatographie Gazeuse Haute Température

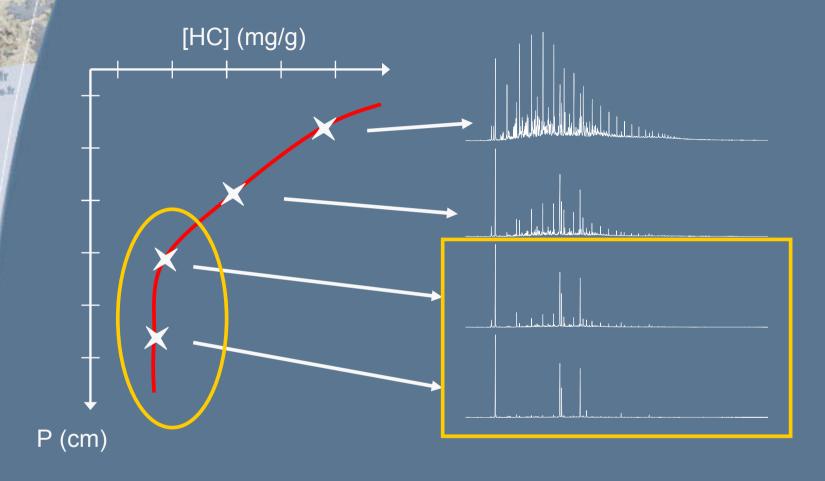
• GC-FID classique (500°C max.)



GC-HT

Chromatographie Gazeuse Haute Température

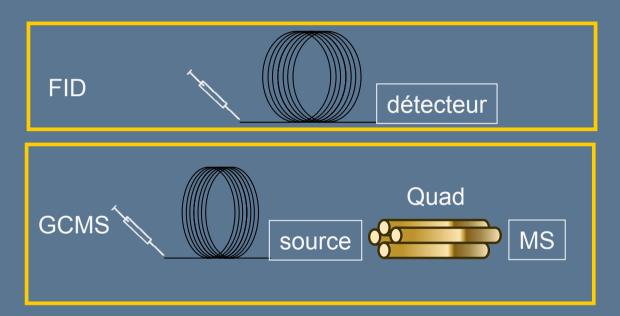

- GC-FID classique (500°C max.) avec une colonne HT (colonne métallique) permet:
 - ⇒ analyse jusqu'à 900°C (distillation simulée)
 - ⇒ étude des fractions lourdes (différenciation des fiouls lourds)

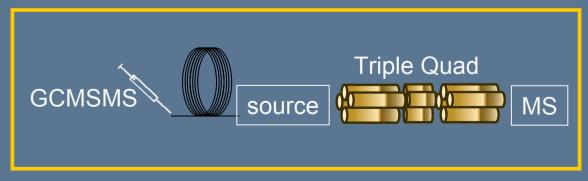

GC-HT

Chromatographie Gazeuse Haute Température

- GC-FID classique (500°C max.) avec une colonne HT (colonne métallique) permet:
 - ⇒ analyse jusqu'à 900°C (distillation simulée)
 - ⇒ étude des fractions lourdes (différenciation des fiouls lourds)

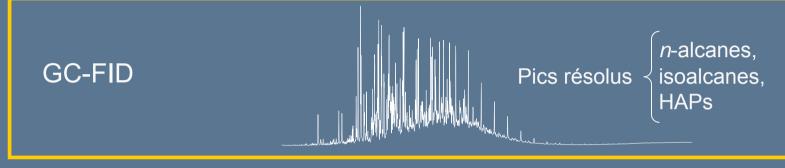
Aux faibles concentrations, difficultés d'analyse pour les matrices complexes (sédiment vaseux, chair de poisson, ...).

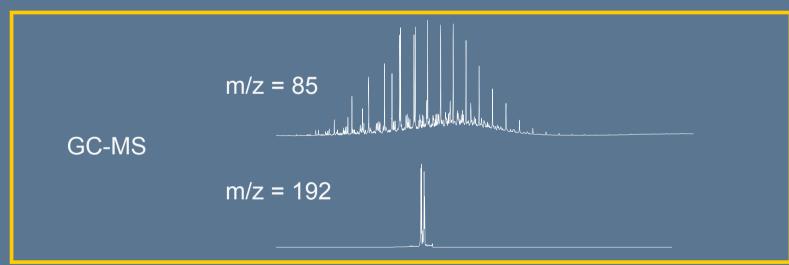

⇒ Utilisation de la GC - MSMS



Chromatographie phase Gazeuse avec Spectromètre de Masse triple Quadrupôle

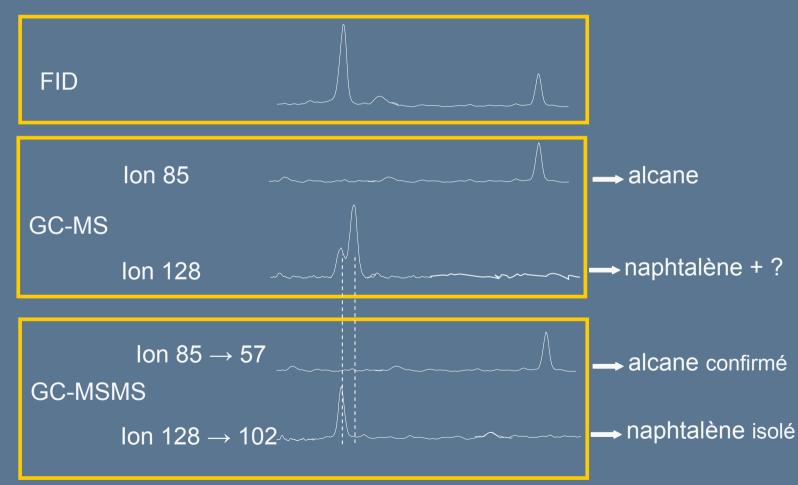
Principe de fonctionnement





Chromatographie phase Gazeuse avec Spectromètre de Masse triple Quadrupôle

Exemple: analyse d'un échantillon d'hydrocarbure vieilli (15 jours)



GC/MS permet la sélection des composé d'intérêts (≈ 70 par échantillon d'HC)

Chromatographie phase Gazeuse avec Spectromètre de Masse triple Quadrupôle

Exemple: analyse d'un échantillon d'hydrocarbure vieilli (300 jours) dans un sédiment vaseux.

Chromatographie phase Gazeuse avec Spectromètre de Masse triple Quadrupôle

Avantages de la GCMSMS:

- sensibilité plus importante
- plus grande sélectivité dans l'analyse des composés
- nécessite moins de purification des échantillons.

Merci de votre attention

