

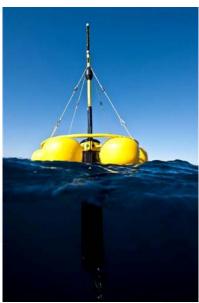
innovation at sea

PROJET VASQUE

SeaExplorer

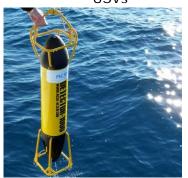
pour la surveillance de la qualité des eaux

F. FIQUET 20 Mars 2012



SOMMAIRE

- ACSA
 - Présentation
- Le projet VASQUE
 - Cadre et objectifs
- L'engin SeaExplorer
 - Présentation
 - Caractéristiques
 - Avantages
- Détection de polluants
 - Missions types de l'engin
 - Fonctionnement
 - Capteurs


ACSA

Lite Tracking

USVs

Acoustic Detector/recorders

FILCEN

Long-range Tracking

UW
Positioning
& Robotics
Systems

Custom designs

Clock references

Torpeado Tracking

Supervision Software

Gliders (SeaExplorer™)

Le projet VASQUE

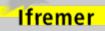
Présentation

- Proposer un engin sous-marin autonome de grande autonomie,
- capable de réaliser en continu une mesure de la qualité des eaux,
- Adapté aux différents milieux : Côtier, hauturier, zone d'intérêt

Cibles

- Milieu côtier :
 - Qualité des eaux de baignade,
 - · Rejets industriels en mer,
 - Sorties des émissaires,
 - ..
- Milieu hauturier :
 - Zones d'exploitation pétrolières,
 - ...
- Cas d'incident :
 - Zone de naufrage d'un navire transportant une matière dangereuse
- Planning
 - Développement sur 3 ans
 - Mise en service : 2013

Le projet VASQUE


Partenaires

ACSA: Maitre d'œuvre

• CEDRE : Définition du besoin, aspect opérationnel

IFREMER : Intégration des capteurs

ACRI-IN: Hydrodynamics

ACRI-ST : Récupération / traitement des données

• LOV : Définition des capteurs / Développement capteur

• COM: Définition des capteurs / Développement capteur

L'engin SeaExplorer

- Présentation
 - SeaExplorer = planeur sous-marin
 - Propulsion par variation de flottabilité
 - Lourd -> L'engin descends avec une pente
 - Leger -> L'engin remonte avec une pente
 - Attitude contrôlée par déplacement de masse interne
- Pourquoi SeaExplorer ?
 - Grande autonomie (> 3 mois)
 - Capacité d'emport de capteurs (5 kg, 10 L)
 - Seul planeur Européen
- Pour le projet Vasque
 - Ajout d'un propulseur pour vol horizontal
 - Intégration des capteurs 'pollution'

L'engin SeaExplorer

Caractéristiques

Immersion : 700 m nominal (max 850 m)

Vitesse : 1.0 nd nominal

Contrer le courant

» Le plus rapide

– Poids :

60 Kg dans l'air

> +-200 gr dans l'eau (max +-500gr)

Longueur : Ø0.24 ; Longueur 2.2 m + 0.8 m antenne

Autonomie : 3 mois (> 2000 Km)

Communication :

» Satellite Iridium

» Radio (> 1000 m)

» Acoustique (> 4 Km)

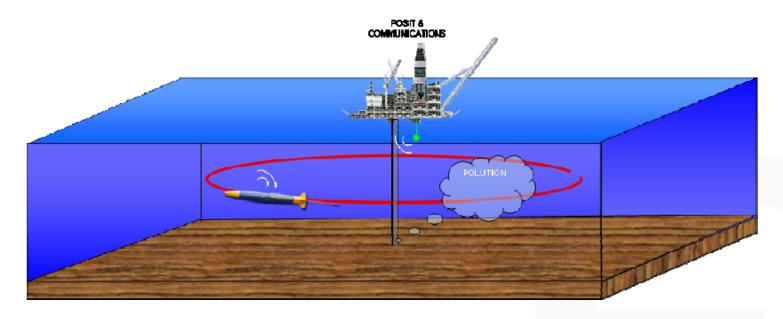
Capteurs :

» Sections interchangeables

» 4 en zone sèche

» En zone humide

» Couplé au corps



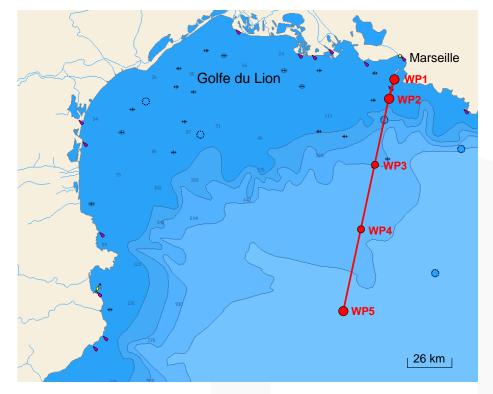
Détection de polluants

Missions types :

Surveillance d'une zone d'intérêt

- Totalement autonome
- Alerte en temps réel sur détection

- Missions types :
 - Suivi de pipe


- Vol horizontal
- Guidage acoustique

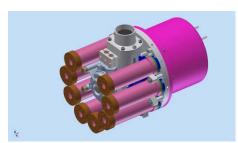
Détection de polluants

Missions types :

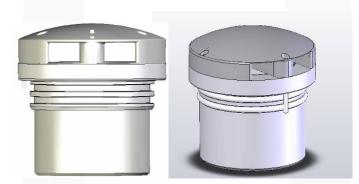
- Surveillance de zone à fort trafic
 - Autonomie
 - Programmation / suivi
 - Guidage acoustique (pas de retour en surface)

- Capteurs
 - Sections interchangeables / modulaires
 - Intégration de capteurs 'standard' :
 - Nitrate
 Chlorophylle
 - Salinité
 - Pression
 - 02
 - ...

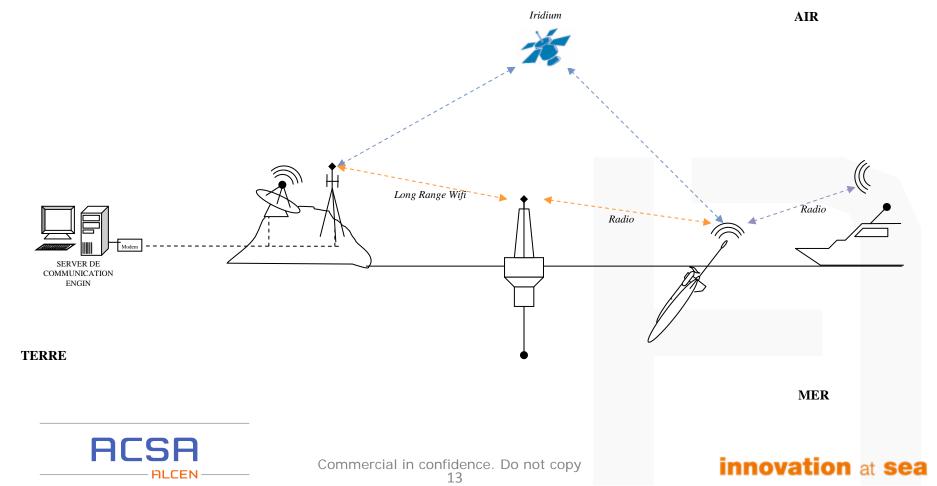
- 2 développements :
 - Mini Préleveur -> Echantillons
 - Mini Fluo -> Hydrocarbure

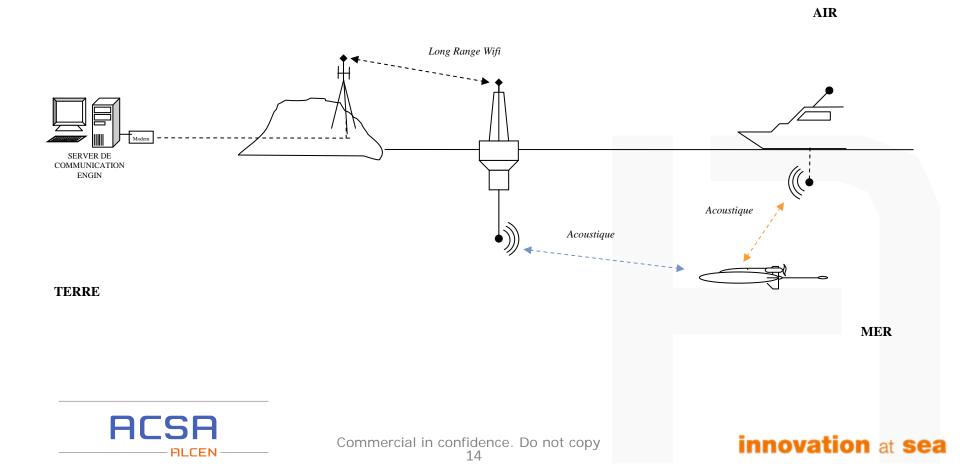

Détection de polluants

• Capteur : Mini Préleveur


- Développé par IFREMER
- 8 capsules de 50ml
- Entièrement pilotable
- Prélèvement par pompage
- Prélèvement en zone humide avant

- Collaboration MicroModule / Laboratoire du COM (CNRS)
- Brevet
- Format PUCK (Standard: Ø75x100mm)
- Mesure par fluorescence
- 2 versions :
 - MiniFluo-UV : Phénanthrène & Tryptophane
 - MiniFluo-H : Fluorène & Pyrène





- Traitement & alertes
 - Aérien

- Traitement & alertes
 - Sous-marin

Détection de polluants

Conclusion

Problématiques

- Surfaçage fréquent en zone côtière (risque d'accidents)
- Coût des opérations classiques (AUV, Bateau, ...)
- Coûts de communications
- Positionnement entre deux surfaçages
- Navigation par petit fond / Traversée de nappes
- Consommation / taille des capteurs
- Caractérisation fine du polluant

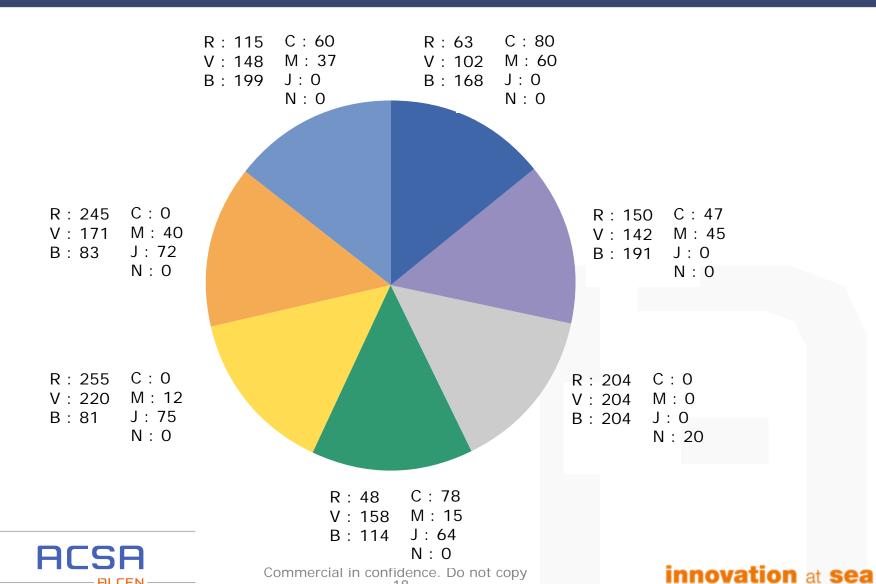
Solutions apportées

- Système de positionnement acoustique
- Planeur hybride : Faible coût d'investissement et d'opération
- Long Range Wifi sur bouée
- Développement / intégration d'un propulseur de consommation égale au ballast
- Conception et fabrication de capteurs spécifiques
- Prélèvement in situ automatisé

Conclusion

Problématiques	Solutions apportées
Surfaçage fréquent en zone côtière (risque d'accidents) et positionnement entre deux surfaçages	Système de positionnement acoustique
Coût des opérations classiques (AUV, Bateau,)	Planeur hybride : Faible coût d'investissement et d'opération
Coûts de communications	Long Range Wifi sur bouée
Navigation par petit fond / Traversée de nappes	Développement / intégration d'un propulseur de consommation égale au ballast
Consommation / taille des capteurs	Conception et fabrication de capteurs spécifiques
Caractérisation fine du polluant	Prélèvement in situ automatisé

WWW.ACSA-ALCEN.COM


Frédéric Fiquet

Email: ffiquet@acsa-alcen.com

HTTP:\\www.acsa-alcen.com Email: contact@acsa-alcen.com Phone: +33 (0)4 42 58 54 52

COULEURS A UTILISER

FILCEN