Interspill 2015 Bioremediation Workshop

New approaches for improved use of bioremediation strategies

Svein Ramstad, SINTEF Environmental Technology

Bioremedediation of oil contaminated shoreline sediments

Factors affecting biodegradation/bioremediation

Bioremediation is heavily influenced by the nature of the contaminated environment and the interaction between microorganisms

- Microbes/consortia
- Environmental parameters; temperature,
- Dissolved oxygen/electron acceptors
- Nutrient limitation (N, P, Me, ...)
- Pollutant accessability
- Pollutant biodegradability (composition/weathering)
- Pollutant concentration/film thickness
- Oil-water interface area
- Transport processes
- Toxicity (low_{Mw} alcanes, BTEX, monosubst. Aromatics)
- Inhibitors (H₂S etc), intermediates/products
- Other natural processes (washout, MFA)
- Others.....

Limiting component/factor(s) will determine bioremediation strategy

Use of novel technologies for oil biodegradation studies

- Advances in methods for oil analyses
 - Improved sensitivity of GC-MS and LC-MS methods
 - Better resolution of complex mixtures (e.g. GCxGC-ToF-MS)
- Better characterization of microbial communities
 - Improved nucleic acid extraction methods for environmental samples
 - Pyrosequencing
 - Microarrays
- Better characterization of microbial processes
 - Transcriptomic, proteomic and metabolomic approaches ("Petrolomics")

GCxGC-ToF-MS 2-D Chromatogram of an aqueous soluble monoaromatic UCM (Steve Rowlands, University of Plymouth)

Metabolomic studies – elucidating complex metabolic patterns

Different masses (ToF-MS analyses)

From a complex metabolic pattern can single masses be identifed with respect to microbial degradation under different environmental conditions

Multivariate statistic assessment of bioremediation processes

- High resolution chemical analysis and state-of-the art microbial analysis generate large amounts of data
- Multivariate data analysis methods can be used to visualize biodegradation processes.
- Bioremediation courses and trends can be predicted and optimized according to environmental conditions

Operationalisation – Bioremediation When Where How

Bioremediation is (normally) a secondary cleanup strategy (time!)

State-of-the-art microbiological and chemical analysis methods available for contamination characterisation/monitoring can better help to answer decision questions:

- When, is it suitable/necessary to use/initiate bioremediation actions?
- What kind of actions should be implemented what are the limiting factors?
- How efficient is the bioremediation action?
- How can the bioremediation be optimized?
- How long will processes be efficient? Need the biomass to be further activated and if so, when?
- When should remediation actions be terminated definition of termination criteria?

Technology for a better society

