The relationship environment/life trajectory/physiological performance examined through the example of marine fish

#### José Zambonino

### Head of the Ifremer-ARN laboratory

Adaptation, Reproduction et Nutrition des Poissons



Equipe 1: Réponses des organismes aux changements globaux : approche intégrative



### How do we tackle this relationship?

- Study of the physiological basis of the relationships between fish and environment (natural or aquaculture)
- Environment determine life-trajectories of fish: early-stage effects
- Analytical expertise at different organisational levels (from gene to population)
- Assessment of physiological effects during challenges . Multidisciplinary collaborations



#### It is a developing organism...such as a mammal embryo

This development occurs in coastal areas (nurseries) and could be influenced by the environmental parameters of these zones...

### **Environmental conditioning**

Do environment (including contaminants and counteracting measures) affect fish early life stages, and determine the physiological performance of the future juveniles?



## Study strategy

# Based on predicted scenarios of the fate of marine ecosystems,



Journée de discussions techniques, CEDRE 1 3 novembre 2014

# Effect of an exposure to a moderate hypoxia during larval stages

## Comparison of two species: sea bass and common sole

PhD thesis of G. Vanderplancke



## Frequent hypoxia episodes in South Brittanny...



freme

### **Experimental protocol**

8 days of moderate hypoxia (40% oxygen) during the larval period





#### Assessment of potential effects nearly one year later...





Several hundred of fish...

Journée de discussions techniques, CEDRE 1 3 novembre 2014

fremer

### **Observed effects**



freme







Conditioned fish are smaller

Conditioned fish are bigger

although they have the same feed ingestion





### Transcriptome of conditioned sea bass is permanently imprinted by early hypoxia



**Down-regulation of ATP**consuming processes in conditioned fish

- Signature of hypoxia
- Fish that have been conditioned during the larval period seem to exhibit a « metabolic brake »



**Micro-array** 

reme

**Genes up-regulated** 

**Genes down-regulated** 

# Metabolic expenditure following ingestion & assimilation of food in sea bass

Same amount of food ingested (gavage)



Journée de discussions techniques, CEDRE 1 3 novembre 2014

remer

# Activities of some digestive enzymes in sea bass intestine



# Long-term effect of POP on sole offsprings

ffremer

PCB and PBDE transfer from the females to the progeny

On-going ANR Project: Fish'N'POPs

## The physiology of the off-spring has been imprinted by the contamination of the breeders



## Conclusions

A short and moderate hypoxia during sea bass larval stage significantly impaired the growth of the ensuing phenotype

➤This could be in part explained by an hypoxic imprinting of the transcriptome, which has led to an impairment of ATP-dependent processes, with visible repercussions on digestive processes.

Linking epigenetic to fitness?

### **General considerations**

- Environment during larval period strongly influences the adult phenotype
- Phenotypes are easier revealed during challenges
- Physiological studies examining biological effects of environmental parameters need to take into account life history of animals.
- Studies based on life-history trajectories should take into account combined effects of environment and pollutants
- Necessary to have long-term monitoring of individual performances in natural (or semi-natural) conditions (with a pooling of different expertise)

remer



### Merci