

The CLARA Project

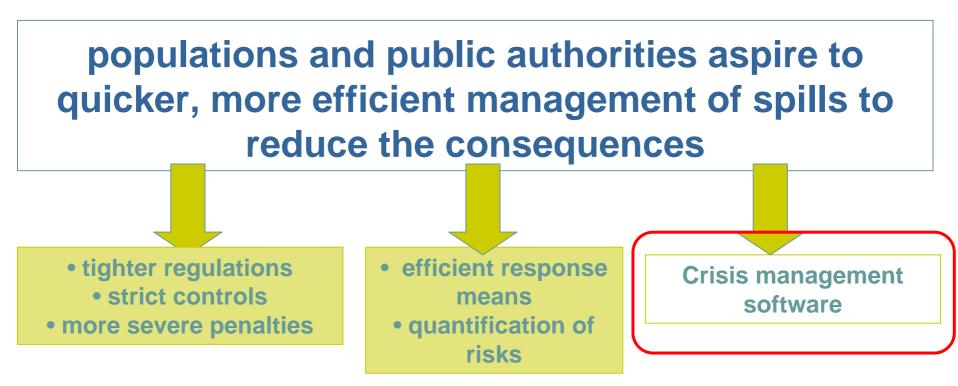
Calculations Related to Accidental Spills at Sea

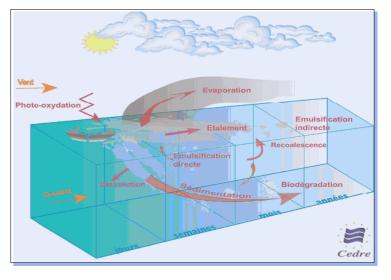
Cedre Information Day, 18 March 2008, INHES, Saint-Denis-La-Plaine

Project partners

- Project start date: 25/11/2003
- Project end date: 24/11/2006

Duration (months): 36	TOTAL BUDGET (k€)	REQUESTED BUDGET (k€)	
TOTAL	920	550	54% 2


- Many incidents on European coasts involving chemical tankers
 - ECE (31-01-06) 10,000 T phosphoric acid
 - **Bow Eagle** (26-08-02) 200 T ethyl acetate
 - **Balu** (20-03-01) 8000 T sulphuric acid
 - levoli Sun (30-10-00) 4000 T styrene and 1000 T methyl ethyl ketone
- High level of maritime transport
- New "risks" (dispersions of toxic gases)
- Considerable media attention demanding rapid and efficient crisis management
- Poorly adapted modelling



Aims

• Predict the evolution of the product in the marine environment

- Determine the concentrations and/or the location of dispersed chemicals
- Assess atmospheric evaporation and dispersion
- Assess the toxicological consequences on humans, and maritime flora and fauna

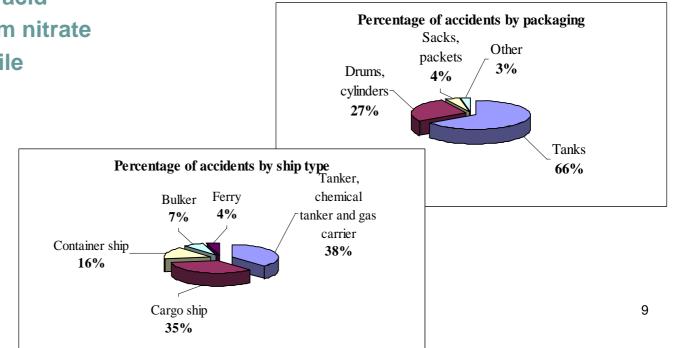
New computer-based decision support system for chemical spills at sea

Project structure

- Phase 1: State of the art review
- Phase 2: Characterisation of products
 - Physico-chemical properties
 - Toxicological properties
 - Product database
- Phase 3: Modelling
 - Hydrodynamic
 - Physico-chemical behaviour
 - Atmospheric dispersion
- Phase 4: IT integration
 - Data input interface
 - Results display interface
- Phase 5: Validation

Analysis of maritime traffic

- Increase in transportation of chemicals in the Channel
 - 30 MT in 1998
 - 150 MT in 2000
- Statistical analysis by CEPPOL over 10 years
 - 164 products identified
 - Certain products are transported more frequently and in greater quantities
 - Benzene
 - Vegetable and animal oils
 - Olefins (unsaturated hydrocarbons)
 - Alcohols
 - Xylene
 - Styrene



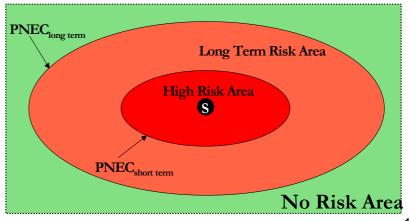
History of accidents at sea

- Between 1947 and 2002, 69 accidents at sea involving chemicals identified worldwide
- Cargo ships and chemical tankers most often involved
- Chemical pollution generally due to collision or explosion onboard
- Identification of 74 substances
 - Sulphuric acid

- Acrylonitrile
- Phenol

Selection of chemicals

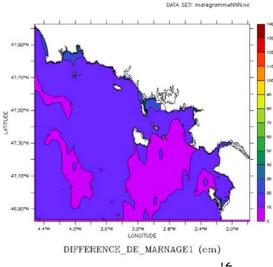
- Greatest hazards (maritime traffic and past accidents)
- Short-term physico-chemical behaviour in the event of a spill (MARPOL classification),
- Presence or otherwise of priority substances
 - OSPAR Convention
 - EU Water Framework Directive 2000/60/EC
 - Directive 76/464/EEC
 - Regulation 793/93/EEC
- European classification (SEBC classification)


- Selection of 33 pure chemicals (no mixtures)
- Realisation of a database of physico-chemical properties

Toxicological analysis

- Definition of high risk areas
- Methodology
 - Collection of valid ecotoxicological data on pelagic organisms

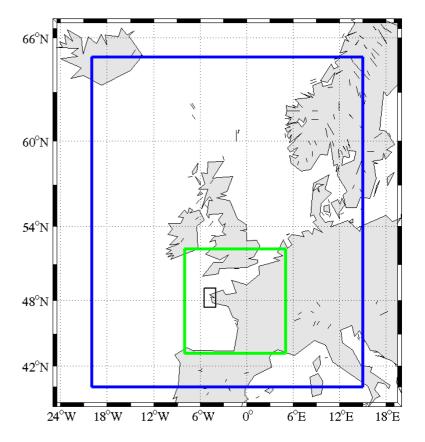
- Characterisation of PNEC (Predicted No Effect Concentrations)
 - Short term exposure
 - Long term exposure



Hydrodynamic modelling

- Use of 5-day Météo-France weather forecasts
- Possibility of selecting homogeneous weather conditions if no forecast is available
- Assessment of current fields
- Definition of climatological structures
- Input data for physico-chemical models

2D and 3D model


- Results: tide, currents, temperature, salinity
- Fine resolution
- Calculation time complies with crisis management

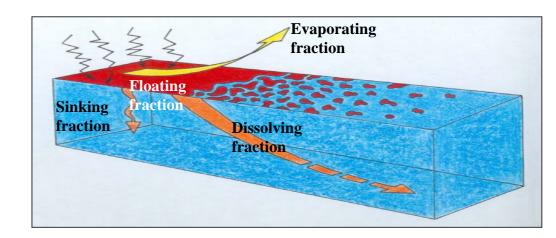
Hydrodynamic modelling

Coupling of 2D/3D models with different resolutions

- Rank0: 2D, 5 km mesh size
 Tide boundary conditions: Atlas model or international tide model
- Rank1: 2D and 3D, 3 km mesh size Tide boundary conditions: rank0 solutions
- Rank2: 3D, 800 m mesh size
 Tide boundary conditions: rank1 solutions

Hydrodynamic modelling

- 3D approach: overlap of models
- Two 3D rank 1 models with a resolution of 3 km
 - Channel and Gascogne
- Nine 3D rank 2 models with a resolution of 800 m
 - From the Landes region to Pas-de-Calais
- 10 depth levels
- Validation of models
 - Currents
 - Temperature
 - Tide
 - Salinity

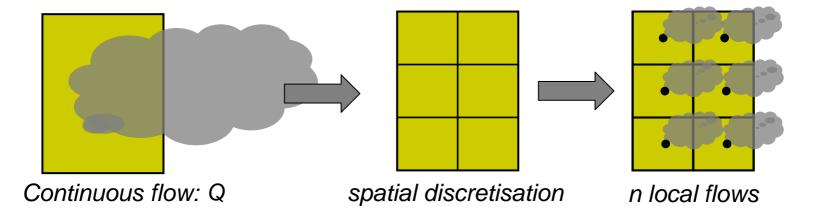


Physico-chemical modelling

Characterisation of the evolution of substances at sea

- Integration of 4 types of behaviour in the hydrodynamic models
 - Sinking fraction
 - Floating fraction
 - Evaporating fraction
 - Dissolving fraction

Results


- Lagrangian approach for dispersed parts (Spillet)
- Eulerian approach for concentrations (concentration fields)

Atmospheric dispersion modelling

Simple, rapid and reliable assessment of potential effects on humans in the event of a spill of an evaporating chemical

- Gaussian "puff" model
- Discretisation of the evaporation surface into *n* surfaces
- Transposition of total rate Q into n rates with the value Q/n
- Application of evaporation rates to each "spillet"
- Assessment of IDLH to characterise the level of toxicity for humans

- Results display interface
- Predetermined pollution thresholds (PNEC, IDLH)
- Concentration graphs
- Mapping of concentrations (aquatic and atmospheric)
 - Maps saved in jpeg format
 - Possibility of exporting results as GIS (shape format)
 - Customisable concentration scale
- Visualisation of dispersed parts (spillet)
- Visualisation of wind fields
- Realisation of animations (avi format)
- Possibility of zooming in on a particular area
- Integration of map

- Realisation of a decision support system for chemical spills at sea
 - Assessment of results over 5 days: Current field Physico-chemical behaviour Effect on marine flora and fauna Atmospheric dispersion Toxicological risk for humans
- Software designed for crisis management and setting up appropriate exclusion zones
- Continuation of development for Mediterranean coasts (CLARA II Project)

The CLARA Project

Calculations Related to Accidental Spills at Sea

Cedre Information Day, 18 March 2008, INHES, Saint-Denis-La-Plaine

VIII. Modelling tools

CLARA: chemicals

Name	CAS n°	Name	CAS n°
ETHYL ACETATE	141-78-6	ETHYLENE GLYCOL	107-21-1
VINYL ACETATE	108-05-4	SODIUM HYDROXIDE	1310-73-2
ACETIC ACID	64-19-7	METHYLENEDIPHENYL DIISOCYANATE	26447-40-5
PHOSPHORIC ACID	7664-38-2	METHANOL	67-56-1
SULFURIC ACID	7664-93-9	METHYL ISOBUTYL KETONE	108-10-1
ETHYL ACRYLATE	140-88-5	METHYL tert-BUTYL ETHER	1634-04-4
ACRYLONITRILE	107-13-1	NAPHTHALENE	91-20-3
AMMONIUM HYDROXIDE	1336-21-6	NONYL PHENOL	25154-52-3
BENZENE	71-43-2	o-CRESOL	95-48-7
BIPHENYL	92-52-4	PHENOL	108-95-2
VINYL CHLORIDE	75-01-4	STYRENE	100-42-5
DIOCTYL PHTHALATE	117-81-7	TOLUENE	108-88-3
1, 2-DICHLOROETHANE	107-06-2	1, 1, 1-TRICHLOROETHANE	71-55-6
DICHLOROMETHANE	75-09-2	1, 1, 2-TRICHLOROETHANE	79-00-5
n-DODECYLBENZENE	123-01-3	UREA	57-13-6
alpha-EPICHLOROHYDRIN	106-89-8	XYLENES	1330-20-7
ETHYLBENZENE	100-41-4		

20

VIII. Modelling tools

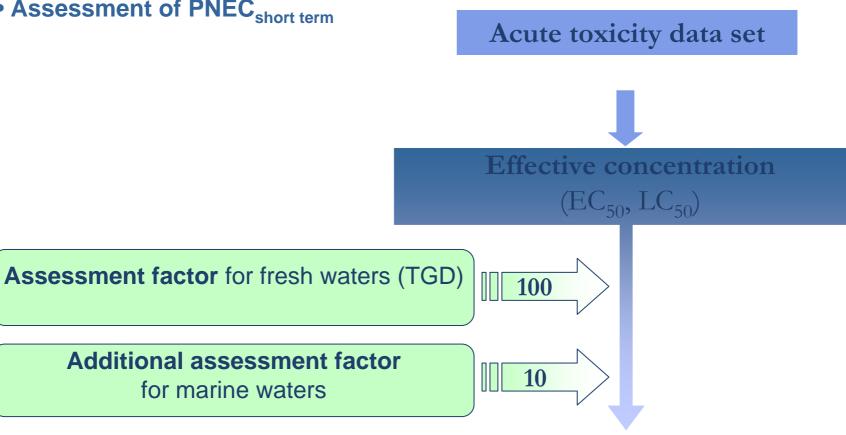
CLARA: physico-chemical and toxicological properties


	–			
Water solubility		Half-life of biodegradation	Characterization of biodegradation	
Normal melting point	Characterization of physical state	Octanol-Water coefficient (Kow)	Characterization of bioaccumulation by	
Density at 20°C vs water at 4°C	Characterization of sinking part	bioconcentration factor (BCF)	marines organisms	
Viscosity	Characterization of floating part	organic carbon-water coefficient (Koc)	Capability of absorption	
Surface tension	Characterization of floating part	Boiling temperature		
hydrolysis degradation constant	Characterization of	Specific heat of solid at 25°C	Characterization of vaporisation tendency	
Half-life hydrolysis	hydrolysis tendency	Heat of vaporization		
Photolysis degradation constant	Characterization of	Vapour density		
Half-life photolysis	Photolysis tendency	Critical pressure		
Biodegradation constant	Characterization of biodegradation	Henry coefficient	21	

Marine pollution

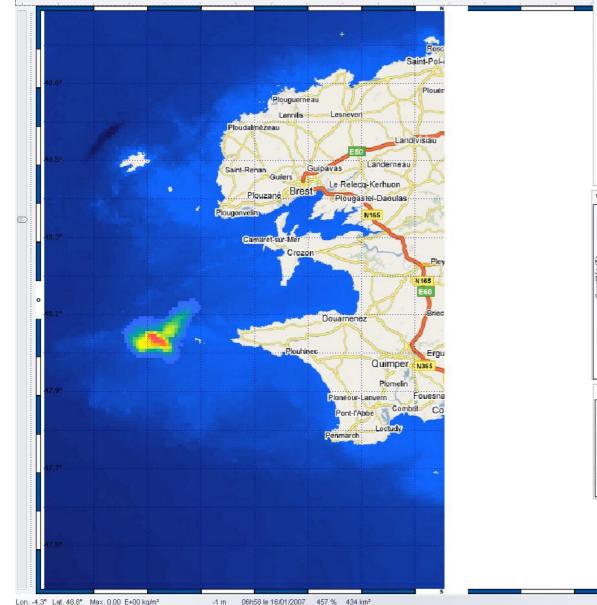
VIII. Modelling tools

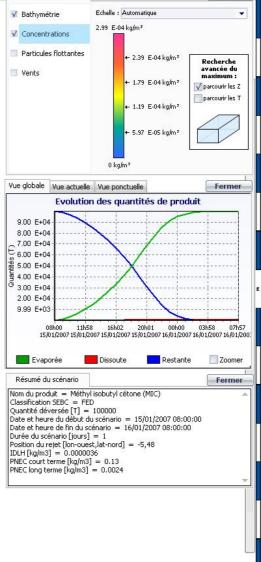
CLARA: toxicological analysis



Marine pollution

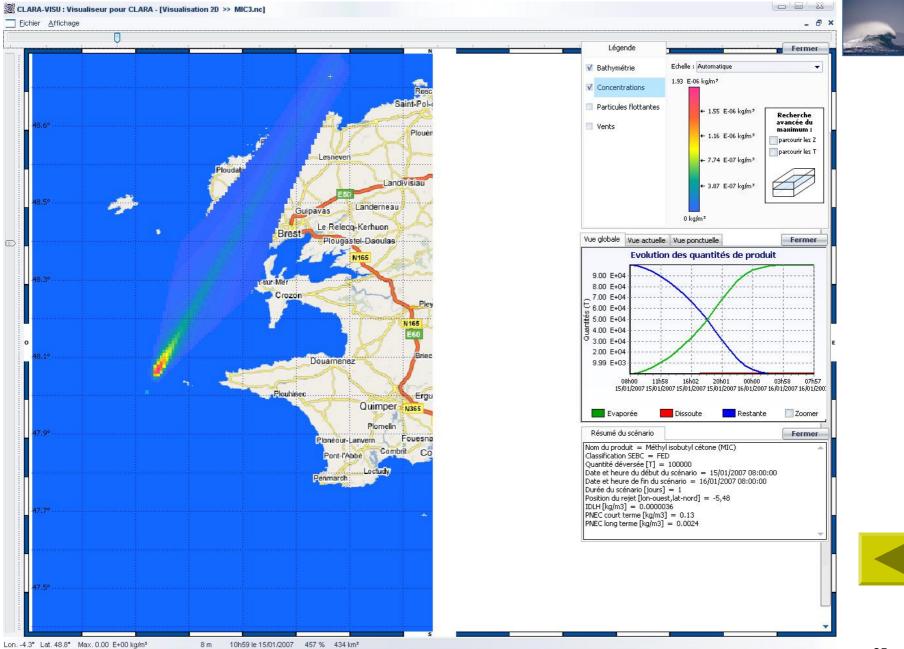
VIII. Modelling tools

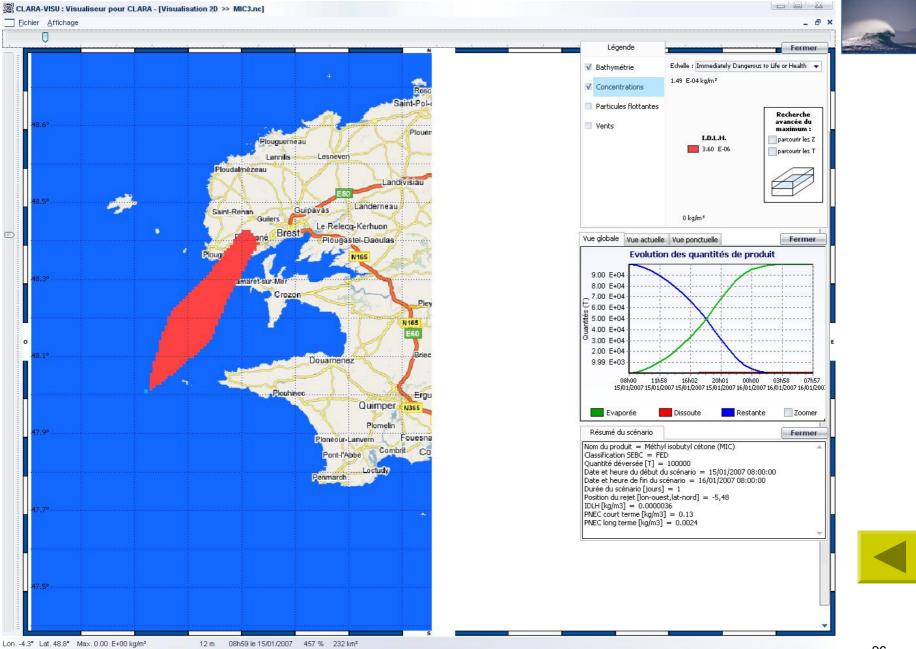

- **CLARA: toxicological analysis**
- Assessment of PNEC_{short term}

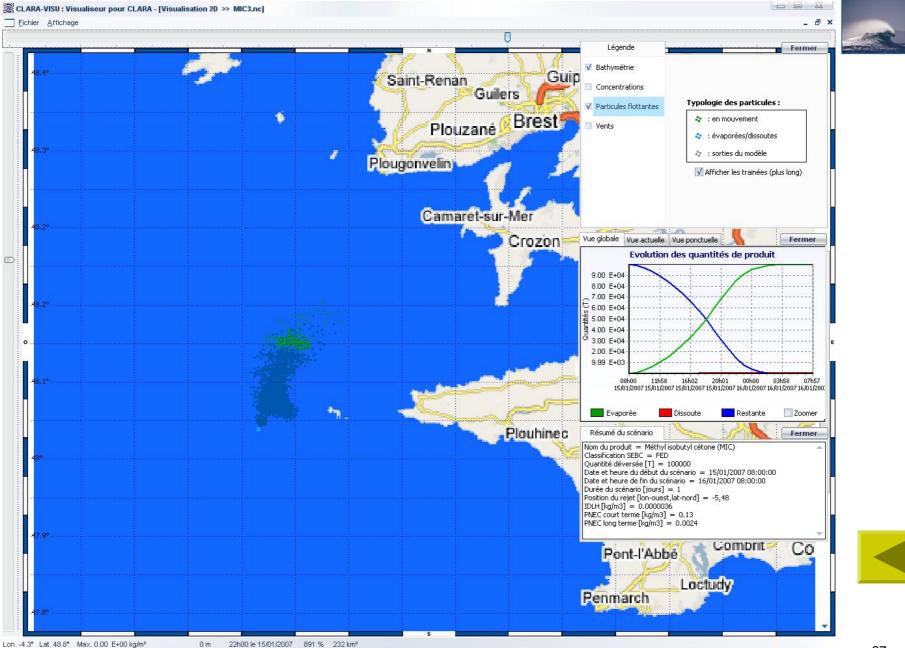


Fermer

_ & ×




Légende


Aquatic concentration

Atmospheric dispersion

IDLH Concentration (Immediately Dangerous to Life or Health)

Floating fraction (Spillet)