

innovation at sea

VASQUE PROJECT

SeaExplorer

for water quality monitoring

F. FIQUET 20 March 2012

CONTENTS

- ACSA
 - Presentation
- The VASQUE project
 - Framework and objectives
- The SeaExplorer vehicle
 - Presentation
 - Characteristics
 - Advantages
- Pollutant detection
 - The vehicle's typical missions
 - How it works
 - Sensors

ACSA

Lite Tracking

USVs

Acoustic Detector/recorders

FILCEN

Long-range Tracking

UW
Positioning
& Robotics
Systems

Custom designs

Clock references

Torpedo Tracking

Supervision Software

Gliders (SeaExplorer™)

The VASQUE project

Presentation

- To develop a long-endurance autonomous underwater vehicle
- Able to constantly measure water quality
- Suitable for different environments: coastal, offshore, sensitive areas

Targets

- Coastal environments:
 - Bathing water quality
 - Industrial discharges into sea
 - Outfalls
 - •
- Offshore environments:
 - Oil extraction areas
 - ...
- In case of incidents:
 - Incident area involving a ship carrying a hazardous substance

Timeline

- 3 year development programme
- Commissioning: 2013

The VASQUE project

Partners

ACSA: Project leader

CEDRE: Requirement definition, operational aspects

IFREMER: Sensor integration

ACRI-IN: Hydrodynamics

ACRI-ST: Data recovery/processing

LOV: Sensor definition/development

COM: Sensor definition/development

The SeaExplorer vehicle

Presentation

- SeaExplorer = underwater glider
- Propelled by buoyancy variation
 - Heavy -> The vehicle moves down the slope
 - Light -> The vehicle moves up the slope
- Attitude controlled by moving mass control system

Why SeaExplorer?

- Long endurance (> 3 months)
- Payload (5 kg, 10 L)
- Only European glider

For the Vasque project

- Addition of a thruster for horizontal gliding
- Integration of 'pollution' sensors

The SeaExplorer vehicle

Characteristics

Depth rating: 700 m (max 850 m)

Speed: 1.0 knot

» Against current

» Highest speed

Weight:

» 60 kg in air

> +-200 g in water (max +-500 g)

Dimensions: Ø0.24; Length 2.2 m + 0.8 m antenna

Endurance: 3 months (> 2000 km)

– Communication:

» Iridium satellite

» Radio (> 1000 m)

» Acoustic (> 4 km)

Sensors:

» Interchangeable payloads

4 dry payloads

» Wet payloads

Connected to body

- Typical missions:
 - Monitoring of a sensitive area

- Totally autonomous
- Real-time alert upon detection

- Typical missions:
 - Pipeline monitoring

- Horizontal glide
- Acoustic guidance

Pollutant detection

Typical missions:

- Monitoring of an area of heavy shipping traffic
 - Endurance
 - Programming / tracking
 - Acoustic guidance (no resurfacing)

- Sensors
 - Interchangeable/modular payloads
 - Integration of 'standard' sensors:

- Mini Sampler -> Samples
- Mini Fluo -> Hydrocarbon

- Sensor: Mini Sampler
 - Developed by IFREMER
 - 8 x 50ml capsules
 - Fully controllable
 - Sampling by pumping
 - Sampling in front wet payload
- Sensor: Mini Fluo
 - Collaboration between MicroModule and COM Laboratory (CNRS)
 - Patented
 - PUCK format (Standard: Ø75x100mm)
 - Fluorescence measurement
 - 2 versions:
 - MiniFluo-UV: Phenanthrene & Tryptophane
 - MiniFluo-H: Fluorene & Pyrene

- Processing & alerts
 - Aerial

- Processing & alerts
 - Underwater

Pollutant detection

Conclusion

Problems identified

- Frequent resurfacing in coastal areas (risk of accidents)
- Cost of classic operations (AUV, Boat, ...)
- Cost of communications
- Positioning between resurfacings
- Navigation in shallow waters/Crossing slicks
- Sensor consumption/size
- Fine-tuned pollutant characterisation

Solutions provided

- Acoustic positioning system
- Hybrid glider: Low investment and operating costs
- Long Range Wifi on buoy
- Development/integration of a thruster with similar consumption to ballast
- Design and manufacture of specific sensors
- Automated in situ sampling

Conclusion

Problems identified	Solutions provided
Frequent resurfacing in coastal areas (risk of accidents) and positioning between resurfacings	Acoustic positioning system
Cost of classic operations (AUV, Boat,)	Hybrid glider: Low investment and operating costs
Cost of communications	Long Range Wifi on buoy
Navigation in shallow waters/Crossing slicks	Development/integration of a thruster with similar consumption to ballast
Sensor consumption/size	Design and manufacture of specific sensors
Fine-tuned pollutant characterisation	Automated in situ sampling

WWW.ACSA-ALCEN.COM

Frédéric Fiquet

Email: ffiquet@acsa-alcen.com

HTTP:\\www.acsa-alcen.com Email: contact@acsa-alcen.com Phone: +33 (0)4 42 58 54 52

COLOUR GUIDE

innovation at sea