

18th Cedre Information Day Spill modelling

Atmospheric dispersion models

Thibauld Pénelon – INERIS / Accident Risk Division Dispersion, Explosion, Experimentation and Modelling Unit - thibauld.penelon@ineris.fr

maîtriser le risque pour un développement durable

© This document is the property of INERIS. It must not be reproduced or used without permission from INERIS - 2013

Presentation plan

How can atmospheric dispersion be modelled?

- What is atmospheric dispersion?
- Scales of atmospheric dispersion
- Sources of accidental emissions
- Weather conditions and the environment

Which models for what purpose?

- Model typology
 - What applications, what limitations?
- What validation?

Following the attack on the Limburg oil tanker, off Yemen, 2002 - source www.meretmarine.com

What is atmospheric dispersion?

The transport and diffusion of a quantity of substance in the air

Representation of the atmospheric dispersion process

(from F. Jourdain, 2007 - Techniques de l'Ingénieur)

Transport: Diffusion:

by the **wind**, according to the cloud's density, initial speed of release by atmospheric **turbulence** (surface friction, thermal gradient) by turbulence generated by obstacles

Scales of atmospheric dispersion

~ 100 m-50 km

min-hours

< 1000 m

sec - min

Buncefield - BBC **INERIS** trials Chernobyl - IRSN Activité volumique du césium 137 dans l'air - 1er mai à 16h00 Trials INERIS CO - NASA one , pic en µg/m3 avec a Bq/m Trials **INERIS** 300 240 220 200 180 170 PREV'AIR - INERIS 1 Mar 2000 Macro, Global (Synoptic) Micro Local Meso (regional)

~ 10-200 km

days

~ 100-100 000 km

months-years

To simulate atmospheric dispersion... A source of emission to be characterised...

- Storage at atmospheric pressure
 - liquid substance at ambient temperature
 - (saturated vapour pressure < 1 atm, at T_{amb} e.g. styrene, xylene, benzene)

- pressurised gas \Rightarrow GASEOUS

- refrigerated liquefied gas (e.g. NH3 at -43°C, LNG at -162°C)
 - \Rightarrow LIQUID RELEASE \Rightarrow VAPOUR EMISSION

Pressurised storage

Navire transporteur de gaz équipé de citernes pressurisées

- Fire emitting smoke
 - \Rightarrow GAS RELEASE + soot

© This document is the property of INERIS. It must not be reproduced or used without permission from INERIS - 2013

- pressurised liquefied gas (e.g. LPG) \Rightarrow DIPHASIC

Limburg oil tanker (10/2002) Cargo fire

... atmospheric conditions to be defined (1/5)

Atmospheric boundary layer

> surface layer (0-100m) characterised by:

- The average wind field
- The temperature field
- The turbulence (atmospheric stability)
- Parameters influenced by the environment
 - ✓ Relief
 - ✓ Obstacles
 - ✓ Surface type

(roughness depending on sea state, land occupation) (thermal)

Atmosphere libre

Altitudes

Vent réestrophicu

... atmospheric conditions to be defined (2/5)

ON LAND

Neutral atmosphere

© This document is the property of INERIS.

Day/night transition Heavy cloud cover Strong wind

moving air mass

"stays at its new location"

moderate turbulence

 \Rightarrow "normal" dilution

(Pasquill class D)

Unstable atmosphere (or "convective")

Sunny day, low wind Ground heated by sun's rays

moving air mass warmer than the air around
⇒ <u>rises further</u>
High turbulence
⇒ high dilution
(Pasquill classes A to C)

Stable atmosphere

Clear night, low wind Ground cooling faster than the air

moving air mass cooler than the air around $\Rightarrow back to initial position$

Low turbulence

 \Rightarrow low dilution

(Pasquill classes E and F)

... atmospheric conditions to be defined (3/5)

AT SEA

At sea, surface temperature variations are very low during the diurnal cycle ($\Delta T < 1^{\circ}C$ at sea; ΔT up to 20°C on land!)

⇒Water surface/ambient air temperature gradient often lower than on land

 \Rightarrow Opposite to stability conditions on land:

- moderately unstable
 - mainly at night
- slightly stable
 - mainly during the day
- neutral

To simulate atmospheric dispersion... ... atmospheric conditions to be defined (4/5): coastal breezes

Land breeze

descending cool air land breeze descending descending rising warm air descending descending air descending descend

... atmospheric conditions to be defined (5/5): thermal inversion

The "inversion layer" is an area where the temperature rises with altitude (high local atmospheric stability):

Gas emissions are trapped between the ground and the inversion layer (except if the speed of the plume enables it to penetrate the layer e.g. hot smoke...)

Which models for what purpose?

To understand phenomena To protect populations and property To protect the environment

- Prevention: risk reduction at source urbanisation control emergency services preparation
- •Emergency: adequacy of response resources to protect people (teams, emergency services, population) to protect the environment to protect property

Dispersion model typology: three approaches

D

×

たく

Integral model (jet, heavy gas...)

Simplified resolution of fluid mechanics equations

Validity: 20 m < d < 10 km

E.g. EFFECTS (TNO), SAFER (Safer Systems), PHAST (DNV Software)....

Gaussian model (for passive dispersion)

Dispersion driven by weather conditions alone

Validity: 100 m < d < 10 km

E.g. ALOHA (EPA/NOAA, USA), ADMS (CERC), INPUFF (EPA)...

CFD model (= Computational Fluid Dynamics)

Fuller resolution of fluid mechanics equations

Validity: 1 cm < d < 10 km

E.g. Code_Saturne (EDF), Flacs (GEXCON), PANEPR (Fluidyn), FDS (NIST), Fluent (ANSYS)...

Gaussian models Suitable for passive dispersion: pollutant transported by the wind and diffused by atmospheric turbulence alone

- Concentration calculated along plume axis
- A Gaussian (statistical) law is used to determine the concentration in the whole plume
- Based on standard deviations σ_y, σ_z characteristic of atmospheric turbulence, according to the stability class, environment...

$$C(x, y, z) = \frac{Q}{2\pi u \sigma_y \sigma_z} \exp\left(-\frac{(y - y_0)^2}{2\sigma_y^2}\right) \left[\exp\left(-\frac{(z - z_0)^2}{2\sigma_z^2}\right) + \alpha \exp\left(-\frac{(z + z_0)^2}{2\sigma_z^2}\right)\right]$$

"Integral" tools

Suitable for dispersions such as jet, heavy gas, light gas or passive dispersion

Tools of intermediate complexity

- Often contain a release source calculation module
- Integrate different models (jet model, dense gas, light gas...)
- Gaussian model used for the final (passive) dispersion phase

Similar advantages to those of Gaussian models

- Consideration of inversion layer
- Good validation on flat ground

Limitations (similar to Gaussian models)

- Constant weather conditions, flat ground (no relief or obstacles)
- Fairly unsuitable for low wind conditions (molecular diffusion not considered)

"Integral" tools: example

"CFD" tools (Computational Fluid Dynamics)

Specific advantages

- Explicit consideration of obstacles
- Explicit consideration of relief

Several "sub-types"

- Eulerian (flow)-Lagrangian (dispersion)
- Eulerian-Eulerian
- Turbulence models: RANS (k-ε, ...), LES, DNS

Limitations

- Numerous numerical parameters and input data
- Long calculation time
- Accuracy depends on resolution method, mesh used, boundary conditions, choice of turbulence models...

 high variability of atmospheric dispersion results
 > Beware of a safety approach by prediction!

⇒ Simulation of complex environments

Example of complex meshing (Sklavounos & Rigas, 2006)

17/19

Inflation layers

Validation of atmospheric dispersion calculation tools? Statistical criteria for validation by comparison with trials

Towards far-field dispersion...

Modelling far-field aerial dispersion (> a few km)

- Spatio-temporal evolution of weather conditions
- Relief, surface heterogeneity
- Eulerian, Lagrangian or mixed approaches
- Many models, often devoted to the simulation of chronic emissions and air quality (on large scale: Saharan dust, radionuclides, volcanoes...)
 - \Rightarrow Possible <u>coupling</u> of local < regional < global scales

