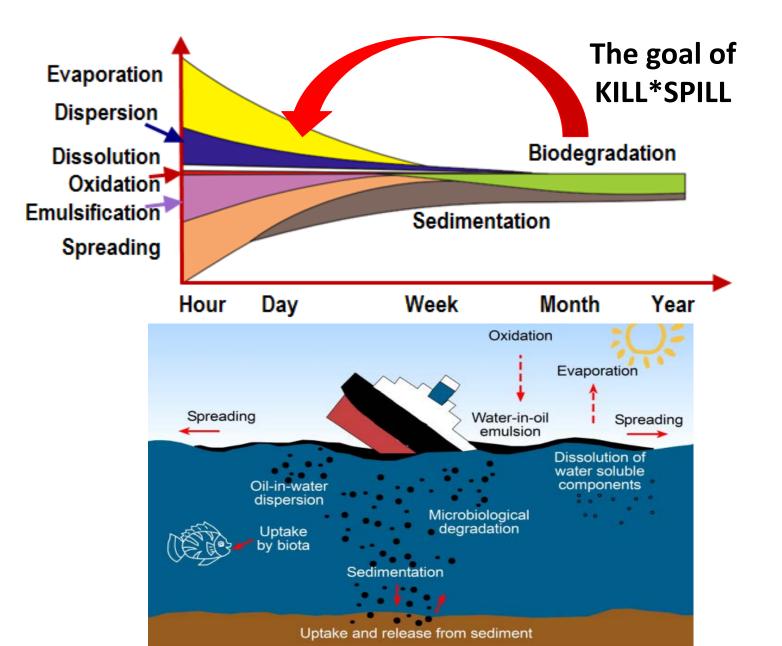


Kill•Spill project: Enhancement of biodegradation techniques

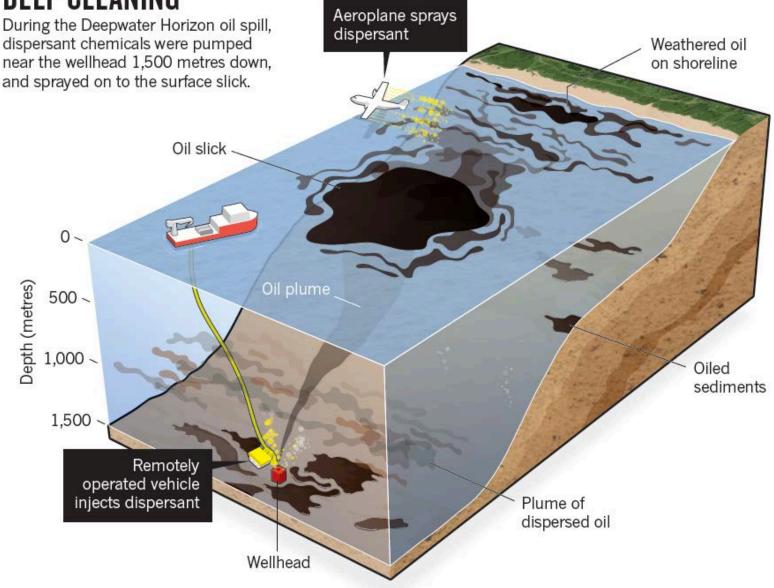
Prof. Nicolas Kalogerakis, Coordinator School of Environmental Engineering Polytechneioupolis, Chania, Crete, Greece

This project is supported by the European Union under the Food, Agriculture and Fisheries and Biotechnology theme of the 7th Framework Programme for Research and Technological Development under Grant Agreement no. 312139

Marine oil spills: Remain a serious environmental problem



KILL SPILL


Weathering processes & period of activation

Well blow-out / Deep sea releases

DEEP CLEANING

FP-7 Topic Addressed

KBBE.2012.3.5-01

Innovative biotechnologies for tackling oil spill disasters (The Ocean of Tomorrow)

Kill•Spill project:

Total cost: 12,483,643.40 € EU contribution: 8,996,599.00 € with 27.38% to SMEs

Project Partners

KILL SPILL TEAM

1 TECHNICAL UNIVERSITY OF CRETE (TUC) - Greece

2 FACHHOCHSCHULE NORDWESTSCHWEIZ (FHNW) - Switzerland

3 ALMA MATER STUDIORUM-UNIVERSITA DI BOLOGNA (UNIBO) - Italy

4 UNIVERSITY OF NEWCASTLE UPON TYNE (UNEW) - UK

5 The Geological Survey of Denmark and Greenland (GEUS) - Denmark

6 UNIVERSITA DEGLI STUDI DI ROMA LA SAPIENZA (UNIRM) - Italy

7 AGENCIA ESTATAL CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS (CSIC) - Spain

8 UNIVERSITY OF ULSTER (Ulster) - UK

9 CONSIGLIO NAZIONALE DELLE RICERCHE (CNR) - Italy

10 UNIVERSITA DEGLI STUDI DI MILANO (UMIL) - Italy

11 UNIVERSITEIT GENT (Ugent) - Belgium

12 VYSOKA SKOLA CHEMICKO-TECHNOLOGICKA V PRAZE (ICTP) - Czech Rep.

13 Københavns Universitet (UCPH) - Denmark

14 BANGOR UNIVERSITY (Bangor) - UK

15 HELMHOLTZ ZENTRUM MUENCHEN DEUTSCHES FORSCHUNGSZENTRUM FUER GESUNDHEIT UND UMWELT GMBH (HMGU) - Germany

16 MARINE BIOLOGICAL ASSOCIATION OF THE UNITED KINGDOM (MBA) - UK

17 UNIVERSITE CATHOLIQUE DE LOUVAIN (UCL) - Belgium

KILL SPILL TEAM

18 NATIONAL UNIVERSITY OF IRELAND, GALWAY (NUIG) - Ireland

19 BIOBASED EUROPE LIMITED (BBE) - UK

20 BIOREM ENGINEERING BVBA (BIOREM) - Belgium

21 GORTON CONSULTANCY LTD (GCL) - UK

22 CREATIVE RESEARCH SOLUTIONS BVBA (CRS) - Belgium

23 ENVIRONMENTAL PROTECTION ENGINEERING SA (EPE) - Greece

24 MADEP SA (MADEP) - Switzerland

25 HEIQ MATERIALS AG (HeiQ) - Switzerland

26 MARITIM MILJO BEREDSKAP AS (MMB) - Norway

27 INSTITUT ZA FIZIKALNO BIOLOGIJO D.O.O. (IFB) - Slovenia

28 EcoTechSystems Srl (ECOTS) - Italy

29 UK SPILL LIMITED (UKSpill) - UK

30 VERMICON AKTIENGESELLSCHAFT (VER) - Germany

31 ACTYGEA SRL (ACTY) - Italy

32 OMYA DEVELOPMENT AG (OMYA) - Switzerland

33 STATE UNIVERSITY OF NEW YORK AT BUFFALO (UB) - USA

Project Focus / Objectives

- Review State-of-the-Art & identify technology gaps
- Develop techniques (biosensors & chemical indices) to monitor hydrocarbon degraders & hydrocarbon degradation
- 3. Develop novel **bio-based dispersants**
- 4. Develop novel **bioremediation agents**
- 5. Develop solutions for sediments
- 6. Develop multi-functional bioremediation agents
- 7. Test their **toxicity**

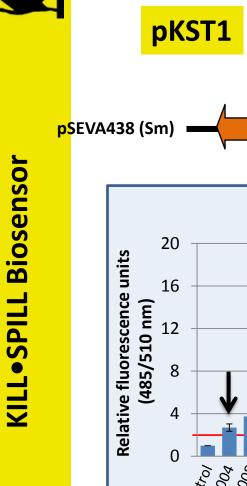
Technologies (products) to be Delivered

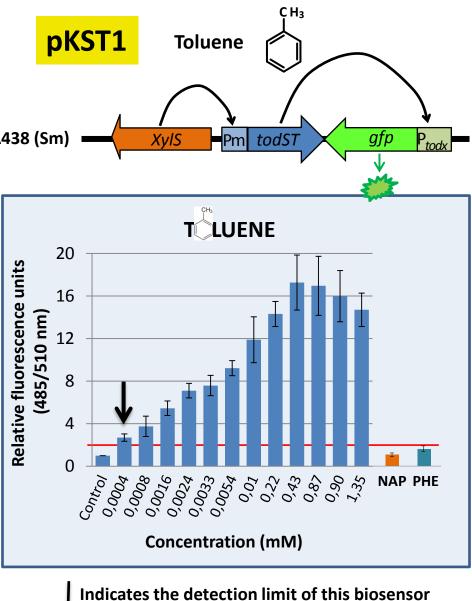
No.	Technology	Application		
1	"Kill•Spill Biosensor" (Biosensors for HC- monitoring)	On-site monitoring of oil degradation		
2	"Kill•Spill FISH-Kit" (Cultivation- independent microbial diagnostic kits)	CARD-FISH diagnostic kit for on-site monitoring of microbial communities		
3	"Kill•Spill FCM-Kit" (Cultivation- independent microbial diagnostic kits)	FISH + FCM diagnostic kit for on-site monitoring of microbial communities		
4	"Kill•Spill Chip" (Microarray chip)	On-site monitoring of microbial communities		
5	CHEMSIC	Monitoring of oil degradation		
6	Polymer-based non-woven fabrics	Sorbent material (shoreline and near-shore)		
7	Mineral-based powders	Sorbent material, accelerated bioremediation (oxic and anoxic environments)		
8	Oxygen-releasing dispersants (OXYGEL TM)	Dispersant, accelerated bioremediation (oxic and anoxic environments)		
9	Porous granular sorbent (AEROBEADS TM)	Sorbent (floating oil), accelerated bioremediation (oxic and anoxic environments)		
10	Plant-based biosurfactant blends (SC1000 TM , SUPERSOLV TM , EASYSOLV TM)	Emulsification and mobilization of oil, sand washing, accelerated bioremediation		
11	Microbial biosurfactants and emulsifiers	Emulsification and mobilization of oil, sand washing, accelerated bioremediation		
12	Formulated HC-degrading MOs and consortia	In-situ bioaugmentation (incl. ABA), further technology development		
13	High-pressure reactor	Lab-scale testing environment for deep-sea cases		
14	Microdroplet reactor	Improvement/isolation of degrading MOs		

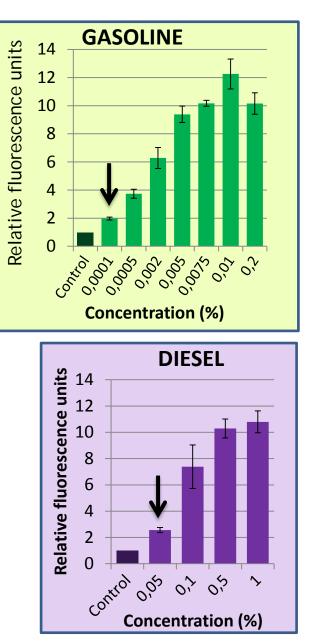
KILLA Technologies (products) to be Delivered

No.	Technology	Application		
15	Low cost biostimulant formulations	Accelerated bioremediation, further technology development		
16	"Kill•Spill ElectrO ₂ " (Electrode-based oxygen supply)	In-situ sediment cleanup		
17	"Kill•Spill snorkel" (Microbial electrochemical snorkel)	In-situ sediment cleanup		
18	"Kill•Spill Robot" (Bio-electro-chemical roaming system)	In-situ sediment cleanup		
19	Infauna accelerated degradation	In-situ sediment cleanup		
20	"Kill•Spill Sed-Cleaner" (Modular system for enhanced biodegradation)	In-situ bioaugmentation and biostimulation for sediments		
21	Sequestering sorbents	Sorbent material for oil sequestration in sediments		
22	"Kill•Spill Deep-sea" (Multi-functional	Enhanced bioremediation of HC-"clouds" formed in deep-		
	bioremediation agents)	sea oil releases		
23	"Kill•Spill Mesoporous" (Mesoporous silica (nano)particles)	Enhanced bioremediation though bioaugmentation and biostimulation on silica		
24	"Kill•Spill SlowRelease" (Slow release microparticles)	Enhanced bioremediation though bioaugmentation and slow-release fertilizers in lipophilic carriers		
25	"Kill•Spill All-in-One" ("All-in-One" multifunctional carrier)	First response measure for enhanced bioremediation and oil dispersion		
26	"Kill•Spill MineralSorb" (Multifunctional sorbent materials)	Mineral based Sinking and agent (Oil transferred to sediments) and enhanced bioremediation		
27	"Kill•Spill Bio-carriers " (Porous bio-	Biomaterials for immobilization of HC degraders and		
	carriers)	biostimulants for sea water & sediments		
28	"Kill•Spill Bio-boom" (Improved	Oil barriers (booms) and with enhanced sorbent &		
	biodegrading booms)	bioremediation capabilities.		

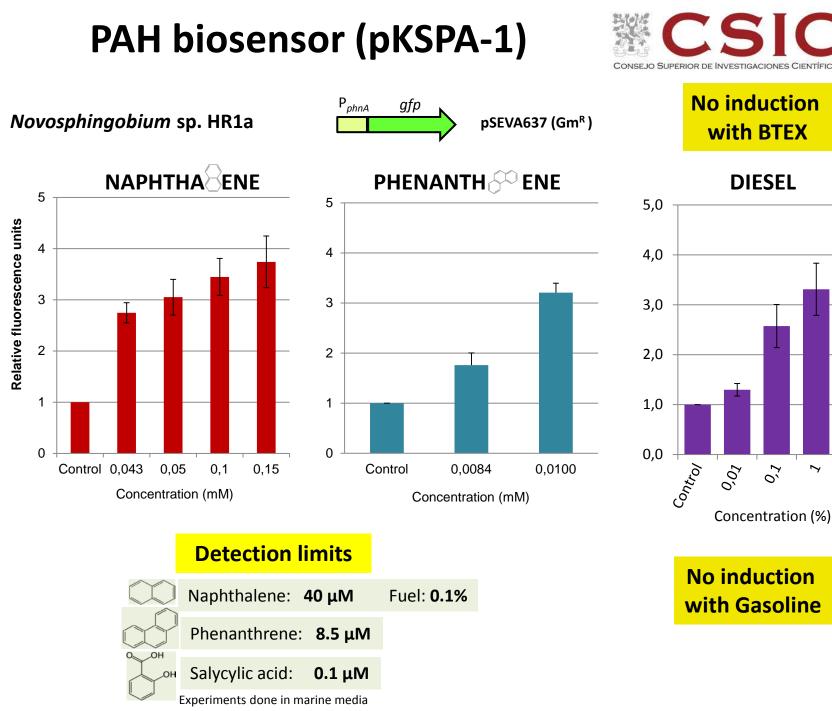
"Mandatory" Field Testing of Technologies

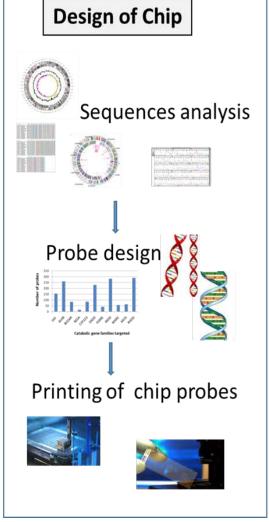

- Field tests of developed technologies during 3rd & 4th year:
 - 1. At CNR-IAMC pilot testing facilities
 - 2. In Aegean Sea (EPE)
 - 3. In North Sea/Norwegian Sea (MMB)
 - 4. At Sea DIAMOND wreck (EPE)
 - In Disko Bay / Greenland (GEUS) and at
 - 6. TUC landfarming mesocosms
 - 7. At ship wreck (CNR-IAMC)

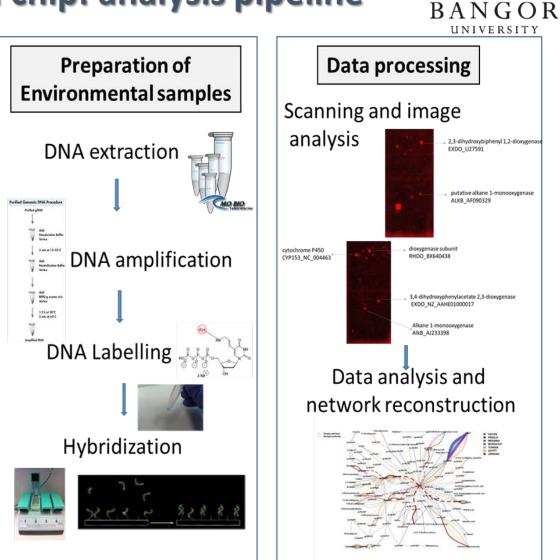




pKST-1 in Alcanivorax borkumensis SK2







KILL•SPILL Biosensor

On-site monitoring of microbial communities Kill Spill chip: analysis pipeline

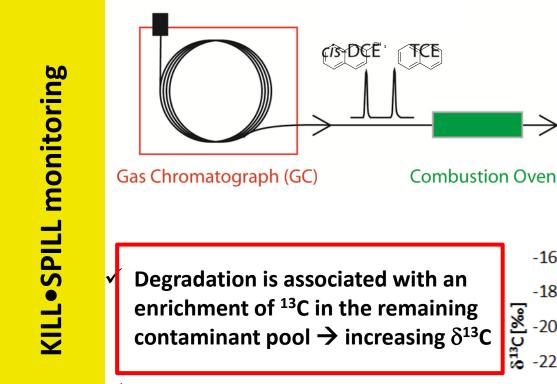
PRIFYSGOL

Development of **molecular tools for the rapid detection of microbial degradation** of oil compounds in the marine environment

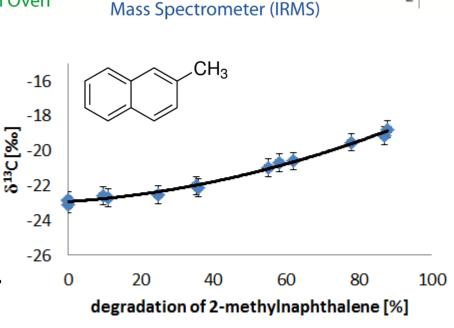
HelmholtzZentrum münchen

German Research Center for Environmental Health

¹²CO₂


¹³CO₂

Calibration / Monitoring


Gas: CO2

Compound Specific Isotope Analysis: Identification of in-situ Degradation of Polycyclic Aromatic Hydrocarbons

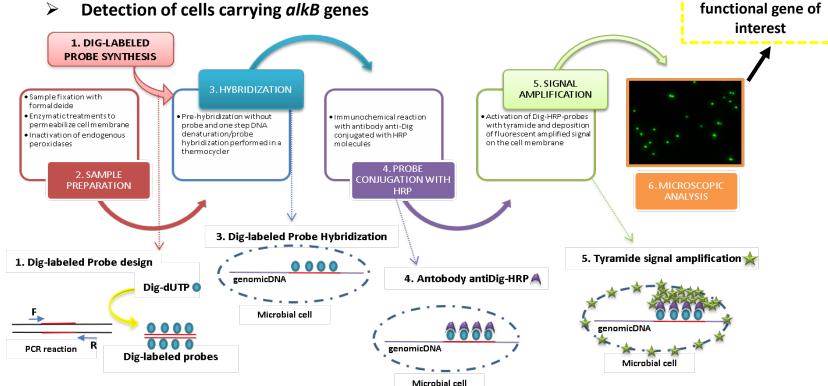
 $CO_2 CO_2$

 Differentiation between degradation and physical processes (isotope insensitive) like sorption and dilution.

Isotope Ratio

geneCARD-FISH assay: detection of *alkB* genes involved in the hydrocarbons degradation

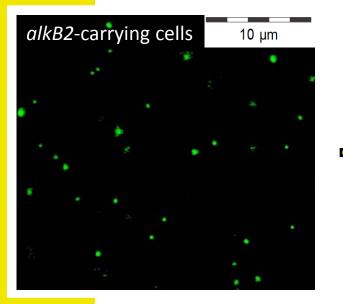
In situ detection of


cells carrying the

A NOVEL BIOMONITORING TOOL:

- **Detection of whole cells carrying specific genes** involved in hydrocarbons degradation processes
- Fluorescence in situ hybridization assay based on the fluorescent signal amplification system \geq
- Accurate and rapid quantification of cells also at very low concentration

geneCARD-FISH PROCEDURE:


- Preparation of the molecular probe
- Hybridization probe/DNA >
- \triangleright Fluorescence signal amplification

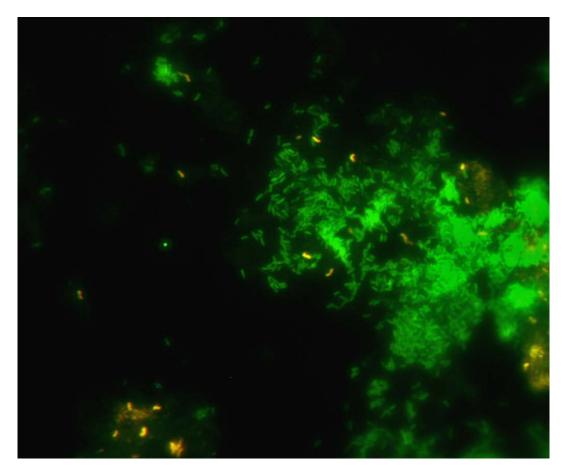
geneCARD-FISH assay: detection of *alkB* genes involved in the hydrocarbons degradation

geneCARD-FISH: application on Alcanivorax borkumensis SK2^T pure culture

- No DNA extraction required
 - Specific hybridization
- Maintenance of cellular morphology
- Fluorescent signal well distributed on the cellular membrane
- Low background noise during the microscopic analysis
- Good detection efficiencies
- Assay suitable for the application on environmental samples

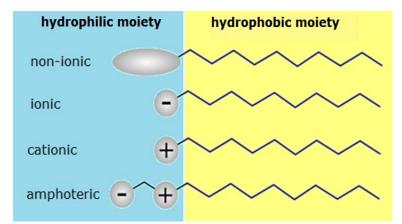
First Kill•Spill FISH kits are now commercially available ...

- FISH protocols adapted to easy and standardized VIT® format allows fast and specific on-site monitoring
- Identification and quantification of various hydrocarbondegrading bacteria using developed test kits:


- Alcanivorax borkumensis
- Cycloclasticus pugetii
- o Marinobacter sp.
- o Oleispira antarctica
- Oleiphilus messinensis
- o Thalassolituus oleivorans

Kill•Spill FISH kit

 Example for the analysis of hydrocarbon-degrading bacteria in natural sample using fluorescence microscopy



Green: Alcanivorax borkumensis, **Yellow**: Oleispira antarctica; Total magnification **1000 x**

Available surface active products to date

- Microbial Biosurfactants:
 - Rhamnolipids
 - Sophorolipids

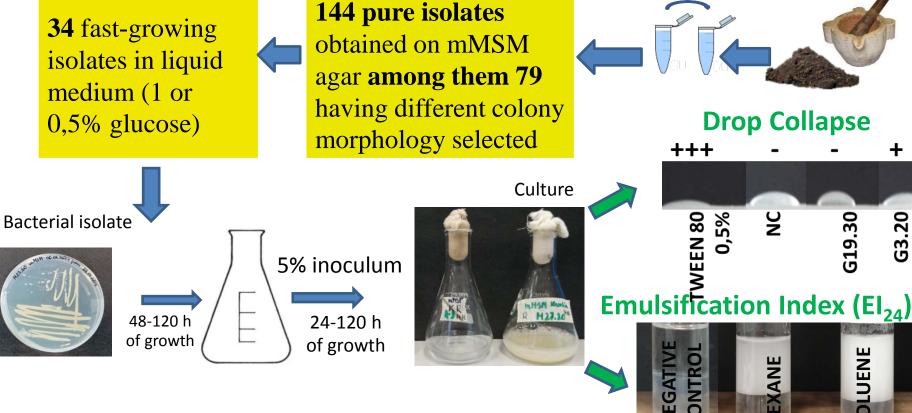
- Biosurfactants + Oxygel (O₂ delivery) + treated CaCO₃
 (adsorption/sinking agent) + hydrocarbon degrading bacteria.
- Several plant surface active extracts/oils from BioBased Europe Ltd (a Scottish company).
- Work is in progress to develop a biocatalyst of rhamnolipids produced by *Burkholderia* cells immobilised on delignified Cellulose for testing in environmental applications.

Available strains with ability to produce biosurfactants

Strain	Biosurfactants (main congener)	Yield (g/L)	Surface tension (mN/m)	EI 24 (%)
Pseudomonas aeruginosa PAO1	Rhamnolipids (Rha-Rha-C ₁₀ -C ₁₀)	2-3	24-29	53-64
Pseudomonas aeruginosa ST5	Rhamnolipids (Rha-Rha-C ₁₀ -C ₁₀)	1.5-2.5	25-29	52-65
Pseudomonas aeruginosa DS10	Rhamnolipids (Rha-Rha-C ₁₀ -C ₁₀)	1.5-3	25-31	52-61
Burkholderia Thailandensis E264	Rhamnolipids (Rha-Rha-C ₁₄ -C ₁₄)	2-4	26-33	67-70
Burkholderia glumae	Rhamnolipids (Rha-Rha-C ₁₄ -C ₁₄)	1.3-2.2	28-30	65-72
Burkholderia plantarii	Rhamnolipids (Rha-Rha-C ₁₄ -C ₁₄)	0.8-1.1	26-27	60-67
Burkholderia kururiensis	Rhamnolipids (Rha-Rha-C ₁₄ -C ₁₄)	1.9-3.1	30-33	60-63
Candida bombicola	Sophorolipids	20-100	36-39	48-53
Pseudozyma aphidis	Mannosylerythritol lipids	*	*	*
Bacillus	Surfactin	0.2-0.8	24-31	58-65

* Currently under evaluation

Isolation and selection of novel marine aerobic microbes with biosurfactant production potential



ALMA MATER STUDIORUM Università di Bologna

G3.20

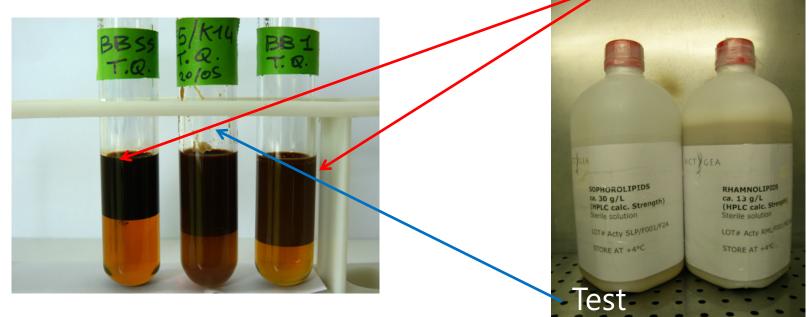
G19.30

LUENE

Emulsion production and stability under extreme conditions

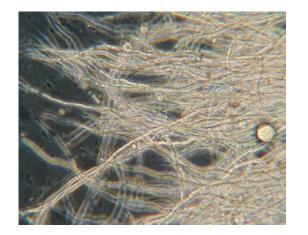
SC

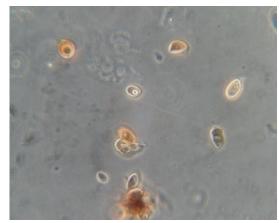
ANE



Biosurfactants produced at industrial pilot scale

Sample	Crude Oil EI (%)	
Rhamnolipids Actygea	57	
Sophorolipids Actygea	63	
SC2000 (Commercial emulsifiers from vegetables)	65	
SuperSolv (Commercial emulsifiers from vegetables)	50	





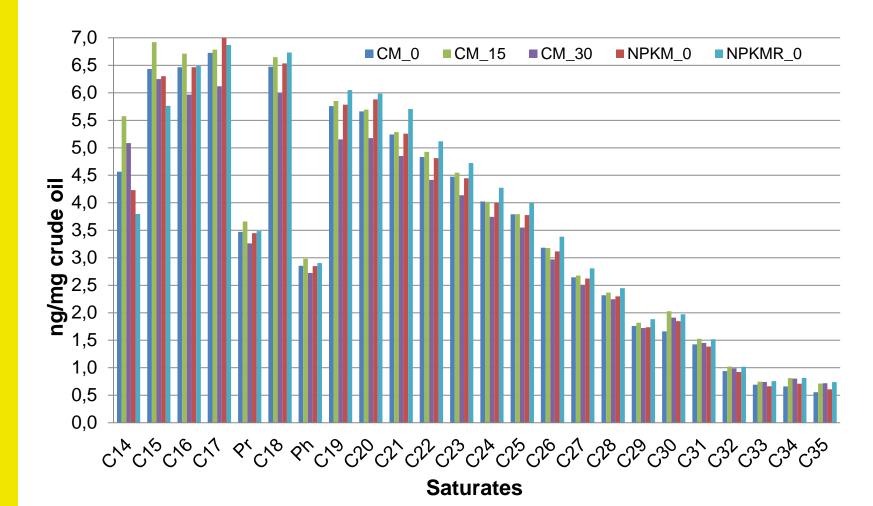
Products: spores of *Cladosporium* sp. (bioaugmentation)

Mycelium

Spores

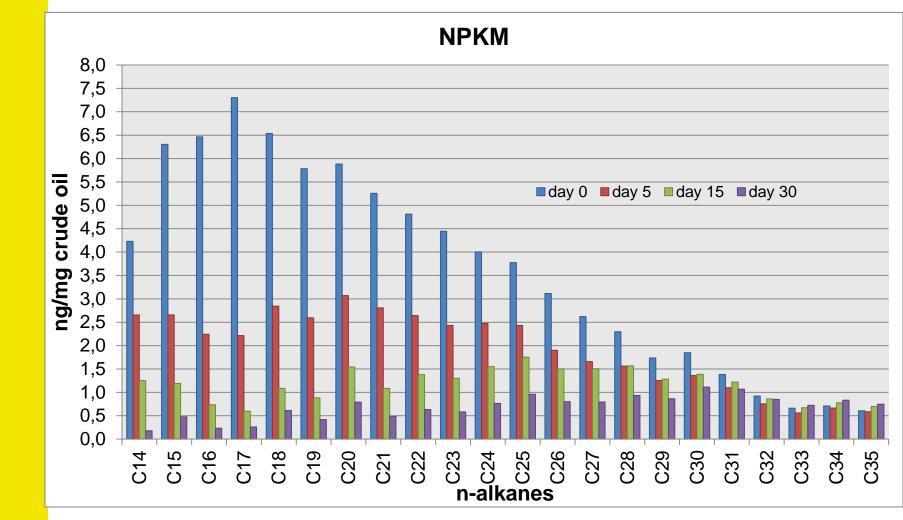
Cladosporium sp. characteristics:

- Able to degrade 80% of 50-80 g/L crude oil added to liquid cultures or to sea sand microcosms

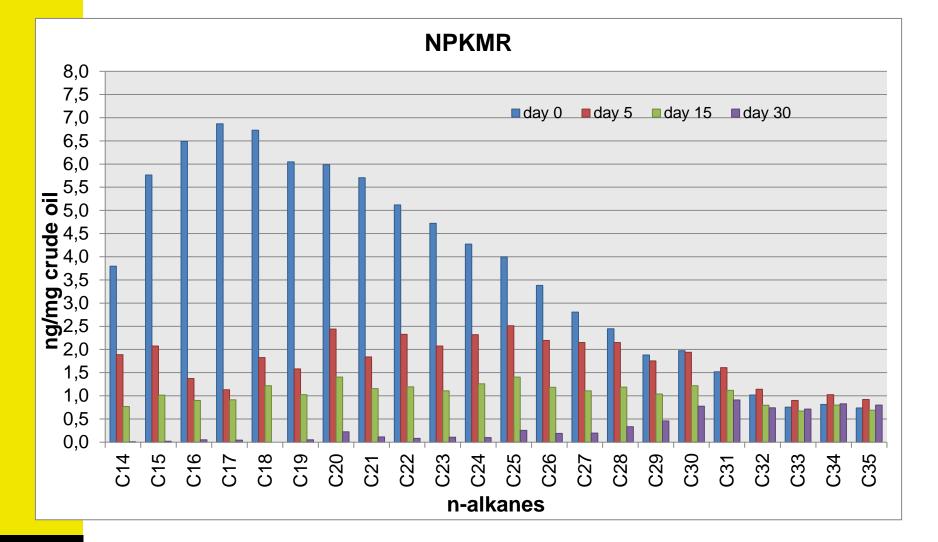

<u>Cladosporium sp. advantages:</u>

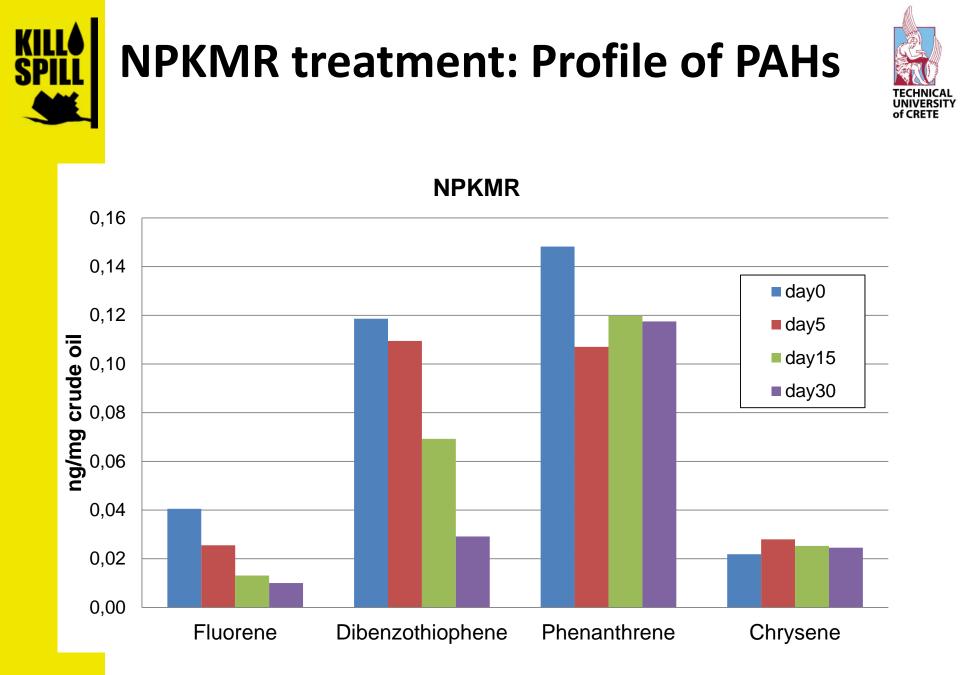
- Spore forming organism;
- Easily stored in dry form & easy to blend with nutrients;
- Preferentially grows on solid substrates;

Effect of Bioremediation Agents (biostimulants) **Concentration profile of alkanes** (Control) at **time 0, 15, 30 days**

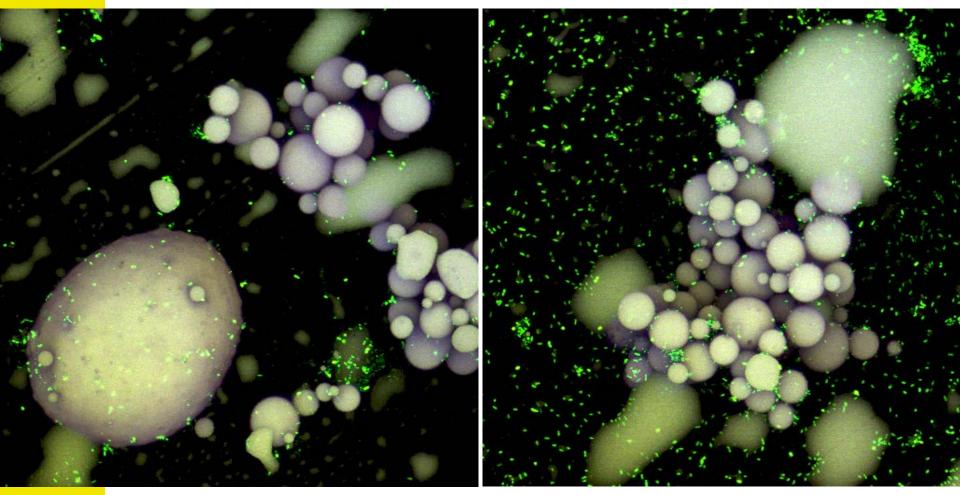


Results of the NPKM Treatment (stimulation with N, P, K & ABA-microbes)



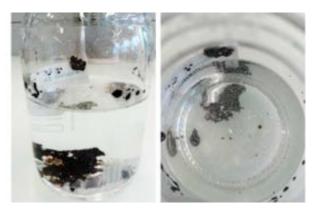


Results of the NPKMR Treatment (plus Rhamnolipids)



Understanding biosurfactant/microbial action: Crude oil in seawater

The "grape bunch formation" effect



Advantages of functionalized CaCO₃

- Functionalized CaCO₃ only sinks if sorbed with oil
- Oil carpet is completely removed
- Formation of dense drops

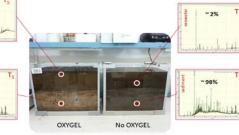
Functionalized CaCO₃

Non-functionalized CaCO₃

Sinking capacity: Marine water, simulated swell (200 RPM), 2h

Enhancing aerobic biodegradation with Oxygen releasing compounds: *Gel form*

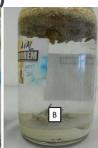
- Without additives:
 - Suitable for injection into sediments
 - - With additives (solvents & surfactants from Bio-Based):
 - Suitable for free oil absorption into its matrix
 - Oxygen release for enhanced degradation.


Oxygel[™]

With a catalyst (OxygelPLUS[™])

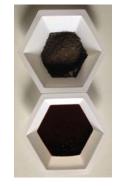
- Release of oxidative radicals
- Chemical oxidation of recalcitrant pollutants

Oxygen releasing compounds: Dry form


Aerobeads[™]

Composition:

- Dried Oxygel[™]
- Functionalized CaCO3 (Microstech)


Without additives:

- Adsorption of a floating oil layer
- Slow release of Oxygen over time for enhanced natural attenuation
- With additives (Solvents / surfactants, lyophilized bacteria, micro-nutrients)
 - 'All-in-one solution'
 - Adsorption of a floating oil layer
 - Enhanced biodegradation on ocean floor
 Work in progress

- With a catalyst (AerobeadsPLUS[™])
 - Release of oxidative radicals
 - Chemical oxidation of recalcitrant pollutants

Work in progress

SLOW-RELEASE MICROPARTICLES

Gel-Beads - Dry Alginate Beads (DABs) Immobilized preparation for bioaugmentation and bioremediation of oil-spills in sea-water

Wet Preparation

What's inside?

UNIVERSITÀ DEGLI STUDI DI MILANO

HC degrading microorganisms (Bio)Surfactants P,N nutrients Other additives

Dry Preparation

Advantages

High operational stability

Low water content - resistance to the biodegradation or microbial contamination

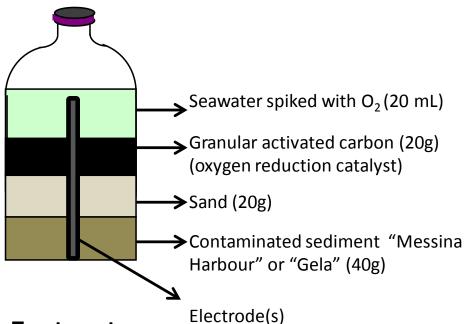
Immediately ready for "on-field" operations

The Kill•Spill Snorkel: Breathing a "spatially distant" electron acceptor

OVERLAYING $H^{+} + \frac{1}{2}O_{2}$ **AEROBIC ZONE** H+ **Hydrocarbon** Petroleum degrading bacteria **Hydrocarbons** $CO_{2} + H_{2}O + H^{+}$ <u> 100D</u> ANAEROBIC OIL-CONTAMINATED SEDIMENT

•Oxidative biodegradation processes in sediments are typically rate-limited by poor availability of high-potential electron acceptors (e.g., **O**₂)

•The Kill•Spill Snorkel aims to accelerate biodegradation by creating an electrochemical connection between the anaerobic sediment and the overlaying aerobic water


•Takes advantage of the capability of certain bacteria to anaerobically oxidize organic substrates with an electrode (ANODE) serving as **respiratory electron acceptor**

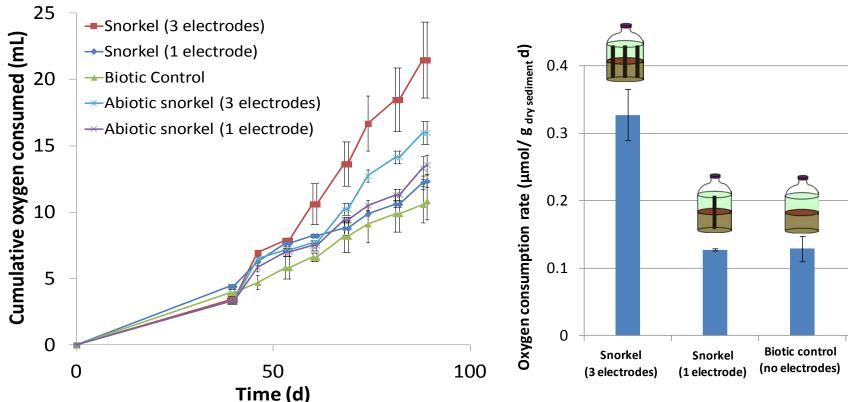
Experimental setup: The Kill•Spill Snorkel "Proof-of-Principle"

Sacrificial microcosms in 120 mL-serum bottles

Treatments:

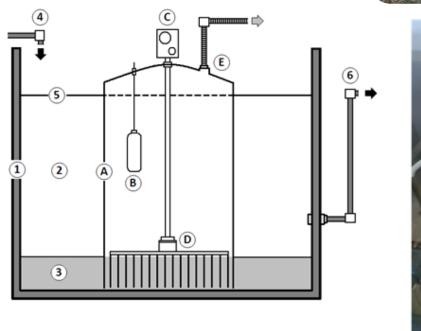
- 1. Snorkel with 3 electrodes
- 2. Snorkel with 1 electrode
- 3. Biotic control with no electrodes
- 4. Abiotic (Autoclaved) Snorkel with 3 electrodes
- 5. Abiotic (Autoclaved) Snorkel with 1 electrodes

Sediment from **Messina (Italy) Harbour** spiked with IFO 180



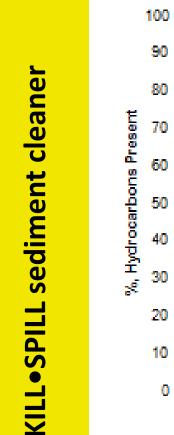
Sediment from Gela (Italy) oil-spill

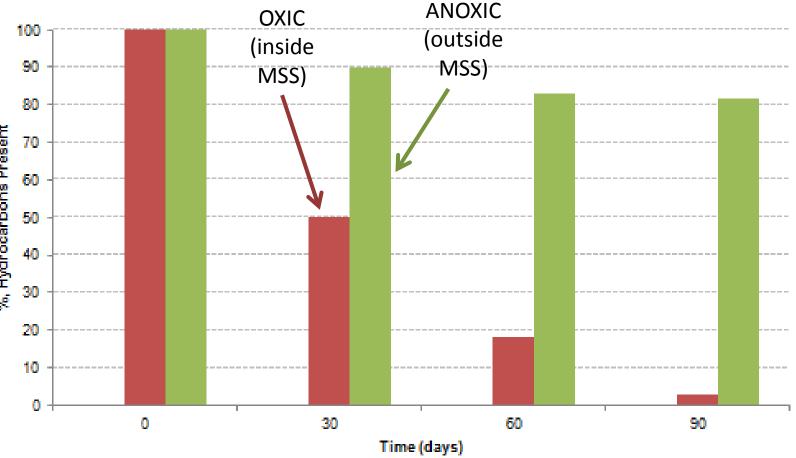
Preliminary results: Oxygen Consumption



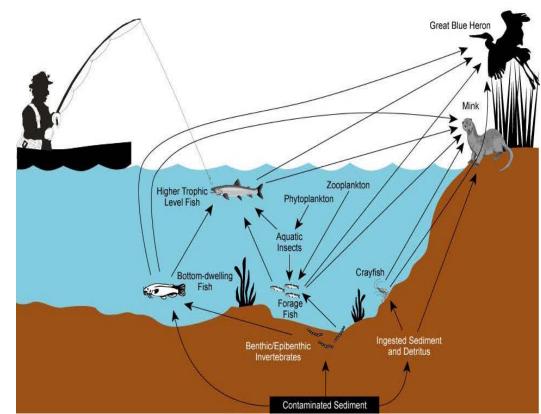
- •Oxygen consumption rate (OCR) in the **Kill**•**Spill Snorkel** (3-electrodes setup) is **2.5 higher** than in the corresponding biotic control (identical setup but with no electrodes)
- **Petroleum hydrocarbon analyses** are in progress to verify if the enhanced OCR corresponded to enhanced biodegradation
- •Enhanced OCR also in the abiotic snorkel (3-electrode setup), possibly due to electrochemical oxidation of inorganic species in the sediment (e.g., S²⁻; Fe²⁺)

Sediment cleaner prototype: Modular Slurry System (MSS)


Α


Schematic representation (A) and picture (B) of "Biostimulation System" proposed in this work. In this "open" system, the seawater is filled *in continuous* in reaction tank (mesocosm) during the all experimental period. 1, Mesocosm tank; 2, seawater; 3 marine artificially polluted sediments; 4. fill line; 5, level of seawater; 6"too full" system and line of discharge of water. A, "Biostimulation System", thermostat system; C, external engine whit air pump; D, steel plate of insufflation air system; E, line for filter air system.

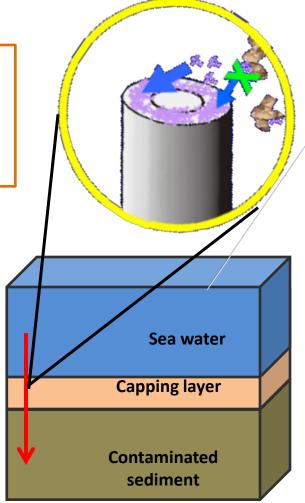
Sediment Cleaner prototype: Modular Slurry System (MSS)


Total Extracted Hydrophobic Fractions	OXIC	AN
90 days	780 ± 80 mg Kg ⁻¹	5400 ± 120 mg Kg ⁻¹

PASSIVE SAMPLING OF HYDROPHOBIC ORGANIC COMPOUNDS (Sediment capping)

- Evaluate the amount of Hydrophobic Organic Compounds (HOCs) in water and sediment porewater.
- **HOCs sorbed** amount onto the **fiber** correlated to the **mobile contaminants** concentration.
- Evaluation of **[HOC]**_{mobile} strongly related to the **biovailable concentration**.
- Provide a measure of the HOCs availability and their migration properties

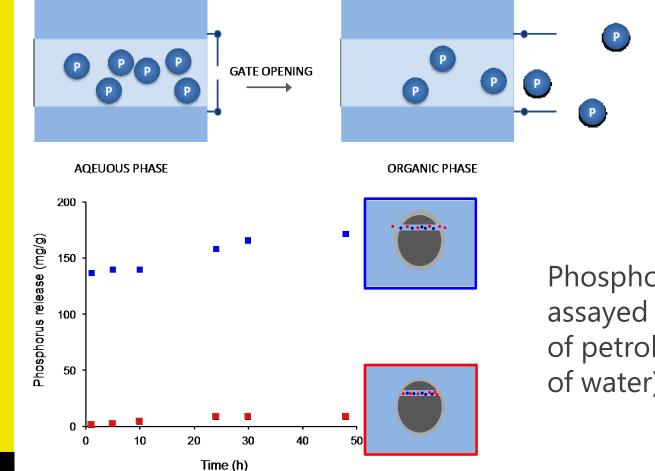
Passive Sampler Devices can be placed in situ for **evaluating** HOCs amount and/or for **monitoring** a remediation process effectiveness


PDSM-SPME

PolyDimethilSiloxane-Solid Phase Micro Extraction

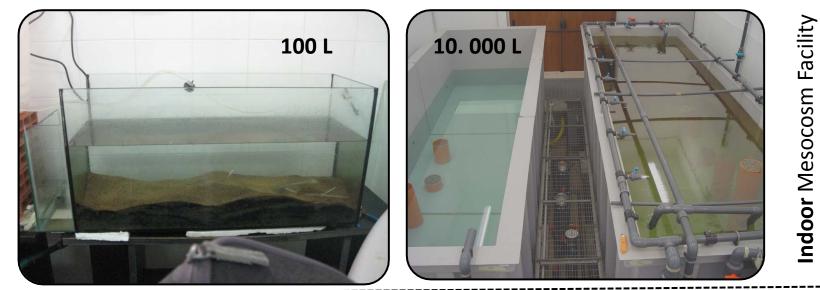
Core glass PDMS fiber absorb the PAHs concentration in the water column and in the porewater

To assess **capping efficiency** the fibers are put into the capping layer and collected after a fixed time for evaluating the PAHs released through the capping layer.



Mesoporous SiO₂ nanoparticles: Formulations to intensify natural (biostimulation) and/or bioaugmentation processes

Development of a "smart gate" system allowing the release of the nutrient in the contact of an organic phase



Phosphorous release assayed in the presence of petroleum (10 µL/mL of water)

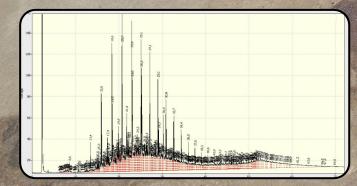
DEMOSTRATION Facilities at IAMC/CNR: Micro-, & Mesocosms Scale Systems

Outdoor Mesocosm Facility

Gela (SR, Sicily, Italy)

One of the biggest Refinery of Europe Refining capacity of 100 kbbl/d

On 4th June 2013, a spill from pipeline of "Topping 1" installation of ENI Refinery of Gela (5 tonnes Crude Oil)


...quick action by Italian Naval Authority and ENI S.p.A to contain the spill...

However... an opportunity for us!

Area for environmental monitoring and scientific experiments

Concluding Remarks

- Kill*Spill is developing several bio-based products for combating marine oil spills.
- By the end of the project, it is expected that at least 15 distinct products will be available for mitigation activities.
- The Oil Spill Response Industry is starting to accept bio-based technologies for marine oil spills.
- Many challenges remain to be addressed!

Thank you for your attention!

Kill•Spill - Integrated Biotechnological Solutions for Combating Marine Oil Spills

Project co-funding by the European Union within the 7th Framework Programme under Grant Agreement No. 312139 is gratefully acknowledged

www.killspill.eu

