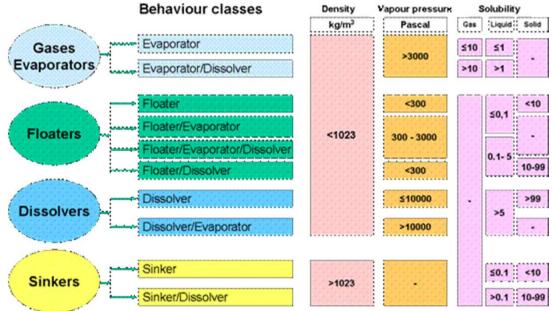

Scientific workshops for Interspill 2012 - Understanding Chemicals: Evaluating Spill Consequences – Use of Modeling

Deborah French McCay, PhD RPS-ASA South Kingstown, RI USA Debbie.FrenchMcCay@rpsgroup.com



Planning for an Emergency

- Chemical Spill Modeling Uses for Incident Response:
 - Contingency Plans: Use stochastic modeling (analysis using 10 + years of current and wind data)
 - Drills/training and spill events: Deterministic (trajectory & fates) modeling using real-time environmental data
- Environmental Conditions Important Data:
 - Water circulation: Contamination primarily to aquatic organisms
 - Wind and air turbulence: Affects air concentrations → human exposure
- Biological Impact Analysis
 - Identify density and types of aquatic organisms for areas of concern
 - Toxicity data/thresholds of concern for chemical(s) spilled
- Simplifying the Problem:
 - Thousands of chemicals could be spilled
 - Classification of chemicals based on physical properties (density, solubility, vapor pressure, LogKow) Bonn Agreement

Density	Solubility	Volatility –	
Relative to Water (g/cm ³)		vapor pressure	
Floater:	Highly soluble:	Highly volatile:	
ρ < 1.0	> 1000	> 10 ⁻³ atm	
Neutral:	Soluble:	Semi-volatile:	
1.01< ρ < 1.03	100 - 1000	10 ⁻⁷ - 10 ⁻³ atm	
Sinker:	Semi-soluble:	Non-volatile:	
ρ > 1.03	1 - 100	< 10 ⁻⁷ atm	
	Insoluble:		
	< 1		

Bonn Agreement - Classification

Potential hazards	Behaviour category *	Human health	Marine environment
Toxicity by inhalation	G/E/F	х	
Explosiveness	G/E	Х	
Flammability	G/E/F	Х	
Radioactivity	G/E/F/D/S	Х	Х
Corrosiveness	G/E/F/D/S	Х	Х
Carcinogenicity	G/E/F/D/S	Х	Х
Aquatic toxicity	D/S		Х
Bioaccumulation	D/S		Х
Persistence	D/S		Х

*G = Gases; E = Evaporators; F = Floaters; D = Dissolvers and S = Sinkers

http://www.bonnagreement.org/eng/html/counterpollution_manual/Chapter26_hazardous%20materials.htm

Tasks During Emergency Response

- Modeling can assist in field sampling and response activities
- Collect environmental data for input to spill model
 - Use of real-time data and models
- Perform spill forecasts; update over time
- Determine range of potential dispersion outputs:
 - Review multiple wind and hydrodynamic models (consensus modeling)
 - Vary dispersion coefficients to bound problem
- Take water column samples to calibrate dispersion calculations
- Sample aquatic organisms (for evaluation of impacts)